davisnotes/mag_mutualind.html

211 lines
8.8 KiB
HTML
Raw Permalink Normal View History

2016-05-20 00:56:25 -04:00
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Magnetism - Mutual Induction - Physics 299</title>
<meta content="C. L. Davis" name="author">
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
255);" link="#0000ee" vlink="#551a8b" alink="#ff0000">
<center>
<h1> <img src="ULPhys1.gif" height="50" width="189"
align="texttop"></h1>
</center>
<center>
<h1>Mutual Induction<br>
</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</i></font><font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</i></font>
<div class="copy-paste-block"><font color="#ff0000"><i><span
class="bqQuoteLink">"A</span></i></font><font
color="#ff0000"><i><span class="bqQuoteLink"> fact is a simple
statement that everyone believes.&nbsp; It is innocent,
unless found guilty.&nbsp; A hypothesis is a novel
suggestion that no one wants to believe.&nbsp; It is
guilty, until found effective</span></i><span></span>"</font><br>
</div>
<font color="#ff0000"><i> </i><font color="#000000">Edward Teller</font></font><br>
</center>
<img src="netbar.gif" height="40" width="100%" align="middle">
<blockquote> </blockquote>
<ul>
<li> As we have seen, Faraday's Law of Induction tells us that a
changing magnetic flux through a circuit will induce an emf and
therefore an "induced current".&nbsp; Consider the situation of
two nearby circuits (below) where the flux through circuit 2
changes due to the changing current in circuit 1.</li>
</ul>
<div align="center"><img alt="magmutualindfig1"
src="mag_mutualind_fig1.jpg" height="261" width="411"><br>
<div align="left">
<ul>
<li>With N<sub>2</sub> turns in circuit 2 the emf is given by</li>
</ul>
<div align="center"><img alt="magmutualindeqn1"
src="mag_mutualind_eqn1.jpg" height="60" width="122"><br>
<blockquote>
<div align="left">but the total flux through circuit 2 is
proportional to the current in circuit 1, where the
proportionality constant is called the mutual inductance
of the coils, M<sub>21</sub>,<br>
<br>
<div align="center"><img alt="magmutualindeqn2"
src="mag_mutualind_eqn2.jpg" height="38" width="162"><br>
<div align="left">Combining these two equations gives<br>
<br>
</div>
</div>
<div align="center"><img alt="magmutualindeqn3"
src="mag_mutualind_eqn3.jpg" height="81" width="159"><br>
<div align="left">In other words the emf in circuit 2 is
proportional to the rate of change of current in
circuit 1.&nbsp; As we will see shortly, the mutual
inductance M<sub>21</sub> depends only on the
geometric configuration of the two circuits.<br>
</div>
</div>
</div>
</blockquote>
<div align="left">
<div align="center">
<div align="left">
<ul>
<li>If the roles of the two circuits are reversed -
that is a changing current in circuit 2 induces a
current in circuit 1 - then</li>
</ul>
<div align="center"><img alt="magmutualindeqn4"
src="mag_mutualind_eqn4.jpg" height="81" width="423"><br>
<div align="left">
<ul>
<li>It is "easy" to show that&nbsp; M<sub>21</sub>
= M<sub>12</sub> .&nbsp; In other words given
two circuits in a particular configuration it
doesn't matter in which circuit the current is
induced the mutual inductance is the same.</li>
</ul>
<ul>
<li><b>UNITS: </b>Inductance is measured in
Henrys <img alt="Henry" src="Henry.jpg"
height="135" width="105" align="middle"><br>
</li>
</ul>
<div align="center"><img alt="magmutualindeqn5"
src="mag_mutualind_eqn5.jpg" height="39"
width="308"><br>
<blockquote>
<div align="left"><img alt="exclamation"
src="exclamation-icon.gif" height="30"
width="31"> The concept of inductance is
related to the magnetic field in a similar way
that capacitance is related to the electric
field.<br>
</div>
</blockquote>
<div align="left">
<ul>
<li>In order to calculate mutual inductance
you will typically follow the steps below:</li>
</ul>
<blockquote>
<ol>
<li>Determine <b>B</b> due to one circuit
at the location of the other using
Ampere's Law or the Biot-Savart Law.</li>
<li>Using this <b>B</b> calculate the
magnetic flux through the 'other' circuit.</li>
<li>Then use the equation N<sub>2</sub>&#934;<sub>2</sub>
= MI<sub>1</sub> to obtain M.</li>
</ol>
You will always find that <i><b>M depends
only on the geometric parameters of the
two circuits and the number of turns in
each circuit.</b></i><br>
<ol>
</ol>
</blockquote>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<blockquote>
<div align="left"> </div>
</blockquote>
<div align="center">
<div align="left">
<div align="center">
<div align="left">
<div align="center">
<div align="left">
<div align="center">
<div align="left">
<div align="center">
<div align="center">
<div>
<div align="left">
<div align="center">
<div align="left"> </div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<blockquote>
<div align="left"> </div>
</blockquote>
</div>
</div>
<blockquote> </blockquote>
</div>
<div align="center"><img src="netbar.gif" height="40" width="100%"></div>
<div align="center">
<div align="center"> </div>
<center>
<p style="color: rgb(255, 0, 0); font-style: italic;"
class="MsoNormal">
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</p>
<font color="#ff0000"><i>This girl said she recognized me from
the vegetarian club, but I'd never met herbivore. </i></font><br>
<br>
&nbsp;<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92"> </p>
</center>
<p><br>
</p>
<blockquote> </blockquote>
</div>
</body>
</html>