327 lines
14 KiB
HTML
327 lines
14 KiB
HTML
|
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
|
||
|
<html>
|
||
|
<head>
|
||
|
<meta http-equiv="Content-Type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
|
||
|
alpha) [Netscape]">
|
||
|
<meta name="Author" content="C. L. Davis">
|
||
|
<title>Light and Optics - Interference from Thin Films - Physics 299</title>
|
||
|
</head>
|
||
|
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
|
||
|
255);" link="#0000ee" alink="#ff0000" vlink="#551a8b">
|
||
|
<center>
|
||
|
<h1><img src="ULPhys1.gif" height="50" align="texttop" width="189">
|
||
|
</h1>
|
||
|
</center>
|
||
|
<center>
|
||
|
<h1>Interference From Thin Films<br>
|
||
|
</h1>
|
||
|
</center>
|
||
|
<center><img src="celticbar.gif" height="22" width="576"> <br>
|
||
|
<br>
|
||
|
<font color="#ff0000"><i>"<span class="bqQuoteLink"></span>Everything
|
||
|
|
||
|
|
||
|
|
||
|
we call real is made of things that cannot be regarded as real<span></span><span
|
||
|
class="bqQuoteLink"></span><span></span>"</i></font><br>
|
||
|
<font color="#ff0000"><i><span class="bqQuoteLink">
|
||
|
<meta http-equiv="content-type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
</span></i></font> <font color="#ff0000"><i>
|
||
|
<meta http-equiv="content-type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
</i></font>Niels Bohr<br>
|
||
|
</center>
|
||
|
<img src="netbar.gif" height="40" align="middle" width="100%"> <br>
|
||
|
<ul>
|
||
|
<li>Double slit interference, described on the previous page, is
|
||
|
rarely observed in nature. On the other hand, interference
|
||
|
due to thin films is quite frequently observed - swirling
|
||
|
colours on an oil slick, colours on a soap bubble, the purple
|
||
|
tinge on an expensive camera lens - are all examples of thin
|
||
|
film interference.</li>
|
||
|
</ul>
|
||
|
<div align="center"><img alt="thin films fig1"
|
||
|
src="lo_thinfilm_fig1.jpg" height="218" width="292">
|
||
|
|
||
|
|
||
|
|
||
|
<img alt="thin films fig3" src="lo_thinfilms_fig3.jpg"
|
||
|
height="219" width="291"> <img alt="thin
|
||
|
films fig2" src="lo_thinfilms_fig2.jpg" height="220" width="320"><br>
|
||
|
<br>
|
||
|
</div>
|
||
|
<ul>
|
||
|
<li><img alt="thin films fig4" src="lo_thinfilms_fig4.jpg"
|
||
|
height="257" align="right" width="539">Consider a thin film,
|
||
|
separating two regions of the same refractive index, for example
|
||
|
a soap bubble. Incident light undergoes reflection and
|
||
|
refraction at every interface as shown at right. There
|
||
|
will be multiple "rays" reflected back into the air (only the
|
||
|
first two are shown in the diagram) and multiple "rays"
|
||
|
transmitted through the film (only the first of these is shown).</li>
|
||
|
</ul>
|
||
|
<ul>
|
||
|
<li>The reflected rays will interfere with each other, their phase
|
||
|
difference being determined by their path difference.</li>
|
||
|
<li>Similarly the transmitted rays will interfere with each other.</li>
|
||
|
</ul>
|
||
|
<ul>
|
||
|
<li><img alt="exclamation" src="exclamation-icon.gif" height="30"
|
||
|
width="31"> Note that coherence of the interfering rays is
|
||
|
ensured since there is only one source - the incident ray
|
||
|
coloured blue in the diagram at right.</li>
|
||
|
</ul>
|
||
|
<blockquote>Assuming a monochromatic source and normal incidence, we
|
||
|
can expect that the two reflected rays will interfere
|
||
|
constructively if their path difference is an integer multiple of
|
||
|
wavelengths,<br>
|
||
|
<br>
|
||
|
<div align="center"><img alt="thin films eqn1"
|
||
|
src="lo_thinfilms_eqn1.png" height="30" width="264"><br>
|
||
|
<br>
|
||
|
<div align="left">where d is the thickness of the film.<br>
|
||
|
</div>
|
||
|
</div>
|
||
|
</blockquote>
|
||
|
<div align="center">
|
||
|
<div align="left">
|
||
|
<ul>
|
||
|
<li><big><u><b>First Correction</b></u></big></li>
|
||
|
</ul>
|
||
|
<blockquote>The path difference 2d is measured inside the film,
|
||
|
but the wavelength is the wavelength in air... Therefore
|
||
|
the condition for a maximum should be,<br>
|
||
|
<br>
|
||
|
<div align="center"><img alt="thin films eqn4"
|
||
|
src="lo_thinfilms_eqn4.png" height="34" width="289"><br>
|
||
|
</div>
|
||
|
However, we know that,<br>
|
||
|
<br>
|
||
|
<div align="center"><img alt="thin films eqn2"
|
||
|
src="lo_thinfilms_eqn2.png" height="34" width="354"><br>
|
||
|
<br>
|
||
|
<div align="left">and using the definition of refractive
|
||
|
index,<br>
|
||
|
<br>
|
||
|
<div align="center"><img alt="thin films eqn3"
|
||
|
src="lo_thinfilms_eqn3.png" height="57" width="354"><br>
|
||
|
<br>
|
||
|
<div align="left">This means the condition for
|
||
|
constructive interference can be written,<br>
|
||
|
<br>
|
||
|
<div align="center"><img alt="thin films eqn5"
|
||
|
src="lo_thinfilms_eqn5.png" height="30"
|
||
|
width="275"><br>
|
||
|
<br>
|
||
|
<div align="left">where n is the refractive index of
|
||
|
the film and λ is the wavelength of the light in
|
||
|
air.<br>
|
||
|
<br>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</blockquote>
|
||
|
<div align="center">
|
||
|
<div align="left">
|
||
|
<div align="center">
|
||
|
<div align="left">
|
||
|
<div align="center">
|
||
|
<div align="left">
|
||
|
<ul>
|
||
|
<li><big><u><b>Second Correction</b></u></big></li>
|
||
|
</ul>
|
||
|
<blockquote>This result implies that when the film
|
||
|
becomes very thin (d approximately zero), we
|
||
|
should expect constructive interference
|
||
|
(equivalent to m = 0). That is, just before
|
||
|
a soap bubble bursts, as its thickness gets
|
||
|
smaller and smaller, we should expect the swirling
|
||
|
colours to become brighter. Actually the
|
||
|
opposite is observed - bubbles becomes dull just
|
||
|
before they burst - in other words destructive
|
||
|
interference must be taking place.<img
|
||
|
alt="confused" src="confused_smiley.gif"
|
||
|
height="22" width="15"><br>
|
||
|
<br>
|
||
|
The explanation to this apparent conflict is that
|
||
|
the first reflected ray (green in the above
|
||
|
diagram) is <i><b>phase changed by 180</b></i><i><b><sup>0</sup></b></i><i><b>
|
||
|
</b></i>by the act of reflection. <i><b>In
|
||
|
|
||
|
|
||
|
the above diagram, only this ray undergoes
|
||
|
such a phase change.</b></i> In fact the
|
||
|
rule (which can be verified theoretically from
|
||
|
Maxwell's equations) is,<br>
|
||
|
<br>
|
||
|
<div align="center"><big><i><b>"A </b></i><i><b>180</b></i><i><b><sup>0</sup></b></i><i><b>
|
||
|
</b></i><i><b>phase change on reflection
|
||
|
occurs when light incident from a less
|
||
|
dense medium (smaller n) reflects off the
|
||
|
boundary with a more dense (larger n)
|
||
|
medium"<br>
|
||
|
</b></i></big>
|
||
|
<div align="left"><br>
|
||
|
Reflection from more dense to less dense
|
||
|
(large n to small n) causes no phase change
|
||
|
and transmitted rays never undergo phase
|
||
|
changes.<br>
|
||
|
<br>
|
||
|
Incorporating this phase change leads to the
|
||
|
condition for <b>constructive interference</b>,
|
||
|
<br>
|
||
|
<br>
|
||
|
<div align="center"><img alt="thin films eqn6"
|
||
|
src="lo_thinfilms_eqn6.jpg" height="31"
|
||
|
width="345"><br>
|
||
|
<div align="left">and for <b>destructive
|
||
|
interference</b>,<br>
|
||
|
<br>
|
||
|
<div align="center"><img alt="thin films
|
||
|
eqn7" src="lo_thinfilms_eqn7.jpg"
|
||
|
height="31" width="294"><br>
|
||
|
<br>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</blockquote>
|
||
|
<ul>
|
||
|
<li><font color="#ff0000"><big><u><b>IMPORTANT !!</b></u></big></font></li>
|
||
|
</ul>
|
||
|
<blockquote><img alt="thin films fig5"
|
||
|
src="lo_thinfilms_fig5.jpg" height="303"
|
||
|
align="right" width="269">The second correction
|
||
|
applies specifically to the air-soap-air
|
||
|
configuration, or more generally to the
|
||
|
circumstance of a film with greater refractive
|
||
|
index than the media on either side. This
|
||
|
correction may not be needed for other thin film
|
||
|
configurations; for example, a film of water
|
||
|
on a glass surface, shown at right. In this
|
||
|
case, since n<sub>air</sub> < n<sub>water</sub>
|
||
|
< n<sub>glass</sub> , there is a <i>180</i><i><sup>0</sup></i><i>
|
||
|
</i>phase change for the reflected rays from both
|
||
|
the air-water and water-glass interface.
|
||
|
That is the condition for <b>constructive
|
||
|
interference</b> reverts to<br>
|
||
|
<br>
|
||
|
<div align="center"><img alt="thin films eqn5"
|
||
|
src="lo_thinfilms_eqn5.png" height="30"
|
||
|
width="275"><br>
|
||
|
</div>
|
||
|
</blockquote>
|
||
|
<blockquote>
|
||
|
<div align="left">
|
||
|
<div>
|
||
|
<div>
|
||
|
<div>
|
||
|
<div>and for <b>destructive interference</b>,<br>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</blockquote>
|
||
|
<div align="center">
|
||
|
<blockquote>
|
||
|
<div>
|
||
|
<div>
|
||
|
<div>
|
||
|
<div><img alt="thin films eqn6"
|
||
|
src="lo_thinfilms_eqn6.jpg"
|
||
|
height="31" width="345"><br>
|
||
|
<br>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</blockquote>
|
||
|
<div>
|
||
|
<div>
|
||
|
<div>
|
||
|
<div>
|
||
|
<div align="left">
|
||
|
<ul>
|
||
|
<li>All of the above analysis assumes
|
||
|
a single wavelength of light.
|
||
|
With incident white light on a thin
|
||
|
film maxima for different
|
||
|
wavelengths will occur at different
|
||
|
film thicknesses. Thus, in
|
||
|
nature, where a thin film will not
|
||
|
typically have a fixed thickness, we
|
||
|
often observe swirling colours, as
|
||
|
the thickness of the film changes.</li>
|
||
|
</ul>
|
||
|
<ul>
|
||
|
<li>Finally, why <i><b>thin</b></i>
|
||
|
films ? A thin film implies
|
||
|
path differences (thicknesses) of no
|
||
|
more than a few wavelengths.
|
||
|
Films thicker than this will not
|
||
|
necessarily exhibit this type of
|
||
|
interference due to re-emission and
|
||
|
scattering of light within the film.<br>
|
||
|
</li>
|
||
|
</ul>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
<blockquote>
|
||
|
<div align="center">
|
||
|
<div align="left">
|
||
|
<div align="center">
|
||
|
<div align="left">
|
||
|
<div align="center">
|
||
|
<div align="left"> </div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</blockquote>
|
||
|
</div>
|
||
|
</div>
|
||
|
<blockquote><img src="netbar.gif" height="40" width="100%"><br>
|
||
|
</blockquote>
|
||
|
<center>"<i><font color="#ff0000">
|
||
|
<meta http-equiv="content-type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
Military intelligence is a contradiction in terms.</font></i><span
|
||
|
style="font-style: italic; color: rgb(255, 0, 0);">"</span><br>
|
||
|
<meta http-equiv="content-type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
Groucho Marx<br>
|
||
|
<br>
|
||
|
<img src="celticbar.gif" height="22" width="576"> <br>
|
||
|
|
||
|
<p><i>Dr. C. L. Davis</i><br>
|
||
|
<i>Physics Department</i><br>
|
||
|
<i>University of Louisville</i><br>
|
||
|
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
|
||
|
<br>
|
||
|
</p>
|
||
|
<p><img src="header-index.gif" height="51" width="92"> </p>
|
||
|
</center>
|
||
|
<p><br>
|
||
|
</p>
|
||
|
</body>
|
||
|
</html>
|