297 lines
9.6 KiB
HTML
297 lines
9.6 KiB
HTML
|
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
|
||
|
<html>
|
||
|
<head>
|
||
|
<meta http-equiv="Content-Type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
|
||
|
alpha) [Netscape]">
|
||
|
<meta name="Author" content="C. L. Davis">
|
||
|
<title>Magnetism - Force on Charges - Physics 299</title>
|
||
|
<meta content="C. L. Davis" name="author">
|
||
|
</head>
|
||
|
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
|
||
|
255);" alink="#ff0000" link="#0000ee" vlink="#551a8b">
|
||
|
<center>
|
||
|
<h1> <img src="ULPhys1.gif" align="texttop" height="50"
|
||
|
width="189"></h1>
|
||
|
</center>
|
||
|
<center>
|
||
|
<h1>Magnetic Forces on Charged Particles <br>
|
||
|
</h1>
|
||
|
</center>
|
||
|
<center><img src="celticbar.gif" height="22" width="576"><br>
|
||
|
<br>
|
||
|
<font color="#ff0000"><i>
|
||
|
<meta http-equiv="content-type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
</i></font><font color="#ff0000"><i>
|
||
|
<meta http-equiv="content-type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
</i></font>
|
||
|
<div class="copy-paste-block"><font color="#ff0000"><i><span
|
||
|
class="bqQuoteLink">"A</span></i></font><font
|
||
|
color="#ff0000"><i><span class="bqQuoteLink"> fact is a simple
|
||
|
statement that everyone believes. It is innocent,
|
||
|
unless found guilty. A hypothesis is a novel
|
||
|
suggestion that no one wants to believe. It is
|
||
|
guilty, until found effective</span></i><span></span>"</font><br>
|
||
|
</div>
|
||
|
<font color="#ff0000"><i> </i><font color="#000000">Edward Teller</font></font><br>
|
||
|
</center>
|
||
|
<img src="netbar.gif" align="middle" height="40" width="100%"> <br>
|
||
|
<ul>
|
||
|
<li> Proceeding under the assumption that magnetic fields exist -
|
||
|
created by an as yet not described mechanism - the magnetic
|
||
|
force on a <b>positively</b> charged particle is found
|
||
|
experimentally to be given by
|
||
|
<div align="center"><img alt="magforcechargeeqn1"
|
||
|
src="mag_force_charge_eqn1.jpg" align="middle" height="33"
|
||
|
width="135"></div>
|
||
|
</li>
|
||
|
</ul>
|
||
|
<blockquote>
|
||
|
<p>where q is the charge (positive) of the particle, <b>v </b>its
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
velocity, <b>F<sub>B</sub> </b>the force it experiences and <b>B</b>
|
||
|
the magnetic field causing the force.<br>
|
||
|
</p>
|
||
|
</blockquote>
|
||
|
<ul>
|
||
|
<li>
|
||
|
<div align="center">
|
||
|
<div align="left"> <img alt="exclamation"
|
||
|
src="exclamation-icon.gif" height="30" width="31"> Note
|
||
|
that this equation is the magnetic equivalent of the
|
||
|
electric expression <b>F<sub>E</sub> = </b>q<b>E</b></div>
|
||
|
</div>
|
||
|
</li>
|
||
|
</ul>
|
||
|
<ul>
|
||
|
<div align="left">
|
||
|
<li>The expression for the magnetic force is written in terms of
|
||
|
a vector (cross) product, which means, like it or not, you
|
||
|
have to work in three dimensions. Several important
|
||
|
facts emerge from this equation. <br>
|
||
|
<ol>
|
||
|
<br>
|
||
|
<li>If <b>v</b> = 0 there is no force. Electric
|
||
|
charges at rest in a magnetic field do not feel a magnetic
|
||
|
force. </li>
|
||
|
<br>
|
||
|
<li>The magnitude of <b>F<sub>B</sub> </b>is given by
|
||
|
<div align="center"><img alt="magforcechargeeqn2"
|
||
|
src="mag_force_charge_eqn2.jpg" height="37"
|
||
|
width="162"></div>
|
||
|
<br>
|
||
|
where φ is the angle between <b>v</b> and <b>B</b>.
|
||
|
<ul>
|
||
|
</ul>
|
||
|
<ul>
|
||
|
<li> So that, when <b>v</b> is parallel to <b>B</b> (φ
|
||
|
= 0) or antiparallel to <b>B (</b>φ = 180<sup>o</sup>)
|
||
|
then sinφ = 0 and <b>F<sub>B</sub> </b>= 0.
|
||
|
Therefore, charged particles moving along magnetic
|
||
|
field lines experience no magnetic force. </li>
|
||
|
</ul>
|
||
|
<ul>
|
||
|
<li> When <b>v</b> and <b>B</b> are at 90<sup>o</sup>
|
||
|
<b>F<sub>B</sub> </b>has its maximum value, F<sub>B</sub>
|
||
|
= qvB. </li>
|
||
|
</ul>
|
||
|
</li>
|
||
|
<br>
|
||
|
<li> <b>F<sub>B</sub> </b>is at right angles to <b>v</b>
|
||
|
and <b>B</b>. The "sense" is given by the usual
|
||
|
rules for the vector (cross) product, sometimes called
|
||
|
(the) "<b>Right Hand Rule"</b>.
|
||
|
<div align="center"><img alt="magforcechargefig1"
|
||
|
src="mag_force_charge_fig1.jpg" height="243"
|
||
|
width="479"><br>
|
||
|
</div>
|
||
|
<br>
|
||
|
This leads to circular (or spiral) motion around the <b>B</b>
|
||
|
field lines.<br>
|
||
|
<br>
|
||
|
<div align="center"><img alt="magforcechargefig2"
|
||
|
src="mag_force_charge_fig2.jpg" height="378"
|
||
|
width="337"> <img
|
||
|
alt="magforcechargefig3"
|
||
|
src="mag_force_charge_fig3.jpg" height="315"
|
||
|
width="401"><br>
|
||
|
<br>
|
||
|
</div>
|
||
|
<div align="center">
|
||
|
<div><img alt="hot" src="hot.gif" height="43" width="79">Don't
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
forget that the direction of the magnetic force
|
||
|
obtained above is for a <b>positive</b> charge.
|
||
|
For a negative charge the direction of <b>F<sub>B</sub> </b>
|
||
|
is reversed. <br>
|
||
|
</div>
|
||
|
</div>
|
||
|
</li>
|
||
|
<div align="left"> <br>
|
||
|
<li>The work done by the magnetic force when a charged
|
||
|
particle is displaced by <b>ds</b> is given by, </li>
|
||
|
</div>
|
||
|
<br>
|
||
|
<div align="center"><br>
|
||
|
<img alt="magforcechargeeqn3"
|
||
|
src="mag_force_charge_eqn3.jpg" height="32" width="244">
|
||
|
</div>
|
||
|
<div align="left">where θ is the angle between <b>F<sub>B</sub></b><sub>
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
</sub>and <b>ds</b>.<br>
|
||
|
</div>
|
||
|
<div align="left"> The displacement <b>ds</b> and the
|
||
|
velocity of the particle, <b>v</b>, are in the same
|
||
|
direction, so θ is also the angle between <b>F<sub>B</sub></b><sub>
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
</sub>and <b>v</b>. But from the form of the
|
||
|
magnetic force we know <b>F<sub>B</sub></b><sub> </sub>and
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
<b>v </b>are perpendicular (θ = 90<sup>o</sup>) therefore
|
||
|
dW is always zero. In other words the <i><b>magnetic
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
force does no work,</b></i> which means, unlike the
|
||
|
electric force, it cannot give a charged particle energy
|
||
|
(increase or decrease its kinteic energy). The effect of a
|
||
|
magnetic force is to change the direction not the kinetic
|
||
|
energy.</div>
|
||
|
</ol>
|
||
|
</li>
|
||
|
</div>
|
||
|
<br>
|
||
|
</ul>
|
||
|
<div align="center"><img alt="divider" src="divider_ornbarblu.gif"
|
||
|
height="64" width="393"><br>
|
||
|
</div>
|
||
|
<ul>
|
||
|
<li> If a charged particle feels both a magnetic and electric
|
||
|
field the resultant force is given by </li>
|
||
|
</ul>
|
||
|
<br>
|
||
|
<div align="center"><img alt="magforcechargeeqn4"
|
||
|
src="mag_force_charge_eqn4.jpg" height="35" width="189"><br>
|
||
|
<blockquote> </blockquote>
|
||
|
<blockquote>
|
||
|
<div align="left">this is known as the Lorentz Force Law.<br>
|
||
|
<br>
|
||
|
<div align="center"><img alt="divider"
|
||
|
src="divider_ornbarblu.gif" height="64" width="393"><br>
|
||
|
<br>
|
||
|
</div>
|
||
|
</div>
|
||
|
</blockquote>
|
||
|
<div align="left">
|
||
|
<div align="left">
|
||
|
<ul>
|
||
|
<li><big><u><b>UNITS</b></u></big></li>
|
||
|
</ul>
|
||
|
<blockquote>
|
||
|
<p>From the form of the magnetic force we see that the units
|
||
|
of <b>B</b> are N/(C.m/s) = N/(A.m). This
|
||
|
combination of basic units is defined as the Tesla.<br>
|
||
|
</p>
|
||
|
<div align="center"> <img alt="magforcechargeeqn5"
|
||
|
src="mag_force_charge_eqn5.jpg" height="56" width="153">
|
||
|
</div>
|
||
|
<p>The Tesla is a very large unit of magnetic field.
|
||
|
For this reason you may occasionally come across the
|
||
|
smaller unit of magnteic field, the Gauss; where 1
|
||
|
Tesla = 10<sup>4</sup> Gauss.<br>
|
||
|
</p>
|
||
|
</blockquote>
|
||
|
</div>
|
||
|
</div>
|
||
|
<blockquote>
|
||
|
<div align="left"> </div>
|
||
|
</blockquote>
|
||
|
<blockquote> </blockquote>
|
||
|
</div>
|
||
|
<img src="netbar.gif" height="40" width="100%">
|
||
|
<center>
|
||
|
<p style="color: rgb(255, 0, 0); font-style: italic;"
|
||
|
class="MsoNormal">
|
||
|
<meta http-equiv="content-type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
</p>
|
||
|
<font color="#ff0000"><i>Q: What did one quantum physicist say
|
||
|
when he wanted to fight another quantum physicist?<br>
|
||
|
A: Let me <font color="#ff0000">atom</font>. </i></font><br>
|
||
|
<br>
|
||
|
<img src="celticbar.gif" height="22" width="576"> <br>
|
||
|
|
||
|
<p><i>Dr. C. L. Davis</i> <br>
|
||
|
<i>Physics Department</i> <br>
|
||
|
<i>University of Louisville</i> <br>
|
||
|
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
|
||
|
<br>
|
||
|
</p>
|
||
|
<p><img src="header-index.gif" height="51" width="92"> </p>
|
||
|
</center>
|
||
|
<p><br>
|
||
|
</p>
|
||
|
</body>
|
||
|
</html>
|