init commit

master
Paul Walko 2016-05-20 00:56:25 -04:00
commit 79c51d7294
422 changed files with 11156 additions and 0 deletions

BIN
Ampere.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.5 KiB

BIN
Coulomb.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 KiB

0
Henry.jpg Normal file
View File

BIN
Ohm.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

0
Snell.jpg Normal file
View File

BIN
StarIconGreen.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

BIN
ULPhys1.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.4 KiB

BIN
anim_lightning.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

BIN
ap_atomexam.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.1 KiB

BIN
ap_cartoon1.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 KiB

BIN
ap_scale.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

BIN
atomspin2.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.8 KiB

BIN
celticbar.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 KiB

BIN
confused_smiley.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 B

189
contents.html Normal file
View File

@ -0,0 +1,189 @@
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Contents - Physics 299</title>
</head>
<body alink="#ff0000" bgcolor="#ffffff" link="#0000ee" text="#000000"
vlink="#551a8b">
<center>
<h1><img src="ULPhys1.gif" align="texttop" height="50" width="189"></h1>
</center>
<center>
<h1> CONTENTS</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"> </center>
<br>
<br>
<center><font color="#ff0000"><i><font face="Times New Roman, Times,
serif"> "All science is either physics or stamp collecting"</font></i></font><br>
Ernest Rutherford<br>
</center>
<!-- Count access --><!-- Must create a data file in /home/www/cgi-bin/counter/data -->
<!--
<img
src="/cgi-bin/Count.cgi?df=phys298_notes_08f.dat"> <br>
<font><i>Visitors since 20 January, 2011</i><br>
--> <img src="netbar.gif" align="middle" height="40" width="100%"> <br>
&nbsp;
<ul>
<li>Classical Electromagnetism
<ul>
<li>Electricity
<ul>
<li><a href="elec_stat.html">Electric Charge</a></li>
<li><a href="elec_strmatt.html">Structure of Matter</a><br>
</li>
<li><a href="elec_coulomb.html">Coulomb's Law</a></li>
<li><a href="elec_efield.html">Electric Field</a></li>
<ul>
<li><a href="elec_dipole.html">Electric Dipole Field</a></li>
<li><a href="elec_contdist.html">Electric Field due to
Continuous Charge Distributions</a></li>
<li><a href="elec_chargemotion.html">Motion of a Point
Charge in an Electric Field</a><br>
</li>
<li><a href="elec_dipexte.html">Electric Dipole in
External Field</a></li>
</ul>
<li><a href="elec_gauss.html">Gauss' Law</a></li>
<ul>
<li><a href="elec_gauss_cond.html">Gauss and Conductors</a></li>
<li><a href="elec_gauss_apps.html">Quantitative use of
Gauss Law</a></li>
</ul>
<li><a href="elec_potential.html">Electric Potential</a></li>
<ul>
<li><a href="elec_potential_dipole.html">Dipole Electric
Potential</a></li>
<li><a href="elec_potential_efromV.html">Determining "E
from V" </a></li>
</ul>
<li><a href="elec_potenergy.html">Electric Potential
Energy</a></li>
<li><a href="elec_capacitors.html">Capacitors</a></li>
<li><a href="elec_dielectrics.html">Dielectric Materials</a></li>
<li><a href="elec_condins.html">Conductors and Insulators</a></li>
<li><a href="elec_current.html">Electric Current,
Resistance and Power</a></li>
<li>Electric Circuits</li>
<ul>
<li><a href="elec_circuits_sp.html">Series and Parallel</a></li>
<li><a href="elec_circuits_kirchoff.html">Kirchhoff's
Laws</a></li>
<li><a href="elec_circuits_RC.html">RC Circuits</a><br>
</li>
</ul>
</ul>
<!-- Start comment
end comment--> </li>
<li>Magnetism</li>
<ul>
<li><a href="mag_intro.html">Introduction</a><br>
</li>
</ul>
<ul>
<li><a href="mag_force_charge.html">Magnetic Force on
Charges</a></li>
<li><a href="mag_force_current.html">Magnetic Forces on
Currents</a></li>
<li><a href="mag_dipole.html">Magnetic Dipoles</a></li>
<li><a href="mag_motionch.html">Motion of Charged Particles
in Magnetic and Electric Fields</a></li>
<li><a href="mag_biotsavart.html">Biot-Savart Law</a></li>
<li><a href="mag_ampere.html">Ampere's Law</a></li>
<li><a href="mag_force_2wires.html">Force Between Two
Parallel Wires: Ampere Definition</a><br>
</li>
<li><a href="mag_faraday.html">Faraday's Law of Induction</a></li>
<ul>
<li><a href="mag_mutualind.html">Mutual Inductance</a></li>
<li><a href="mag_selfind.html">Self Inductance</a></li>
<li><a href="mag_LR.html">LR Circuits</a></li>
</ul>
<li><a href="mag_energy.html">Magnetic Energy</a><br>
</li>
<ul>
</ul>
<li><a href="mag_monopoles.html">Magnetic Monopoles and
"Gauss's Law for Magnetism"</a></li>
<li>Magnetic Properties of Matter<br>
</li>
<li><a href="mag_displacement.html">Displacement Current</a></li>
</ul>
<li>Maxwell's Equations</li>
<li>Electromagnetic Oscillations</li>
<ul>
<li>LC Circuits</li>
<li>LCR Circuits</li>
<li>Alternating Current<br>
</li>
</ul>
</ul>
</li>
<li>Light and Optics</li>
<ul>
<li><a href="lo_emwaves.html">Electromagnetic Waves</a></li>
<li><a href="lo_polarisation.html">Polarisation</a></li>
<!--
-->
<li>Geometric Optics</li>
<ul>
<li><a href="lo_reflection.html">Reflection</a></li>
<li><a href="lo_refraction.html">Refraction</a></li>
<ul>
<li><a href="lo_appdepth.html">Apparent Depth</a></li>
<li><a href="lo_tir.html">Total Internal Reflection</a></li>
</ul>
<li><a href="lo_brewster.html">Brewster's Law</a></li>
<li><a href="lo_dispersion.html">Dispersion</a></li>
<li><a href="lo_spmirror.html">Spherrical Mirrors</a></li>
<li><a href="lo_lenses.html">Thin Lenses</a><br>
</li>
</ul>
<li>Wave (Physical) Optics</li>
<ul>
<li> <a href="lo_interference.html">Double Slit Interference</a>
</li>
<li> <a href="lo_intthinfilm.html">Interference from Thin
Films</a> </li>
<li> <a href="lo_ssdiffraction.html">Single Slit Difraction</a>
</li>
<li> <a href="lo_dsdiffraction.html">Double Slit
Diffraction/Interference</a> </li>
<li> <a href="lo_msgratings.html">Multiple Slit
Diffraction/Interference - Diffraction Gratings</a> </li>
</ul>
</ul>
</ul>
<!-- Start comment
end comment-->
<p><font><br>
<img src="netbar.gif" height="40" width="100%"> </font></p>
<center><font><img src="celticbar.gif" height="22" width="576"> <br>
<br>
<span style="font-style: italic; color: red;">"Physics is,
hopefully, simple.&nbsp; Physicists are not"</span><br>
Edward Teller&nbsp; </font>
<p><font><i>Dr. C. L. Davis</i><br>
<i>Physics Department</i><br>
<i>University of Louisville</i><br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </font></p>
<p><font><img src="header-index.gif" height="51" width="92"> </font></p>
</center>
<div align="center">
<p><a href="http://www.nike.com/wearyellow/index_f.html"><font
color="#ffff00">wearyellow.com</font></a> <br>
</p>
</div>
<p><font><br>
</font></p>
</body>
</html>

BIN
coulaw1.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 899 B

BIN
deltaV.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 KiB

BIN
divider_ornbarblu.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

0
dsotm1.gif Normal file
View File

BIN
efield_lines1.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.5 KiB

BIN
efield_lines3.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

BIN
elec_RC_eqn1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.3 KiB

BIN
elec_RC_eqn2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.9 KiB

BIN
elec_RC_eqn3.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.5 KiB

BIN
elec_RC_eqn4.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.8 KiB

BIN
elec_RC_eqn5.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.8 KiB

BIN
elec_RC_eqn6.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.5 KiB

BIN
elec_RC_eqn7.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.3 KiB

BIN
elec_RC_eqn8.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.1 KiB

BIN
elec_RC_fig1.jpg.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 KiB

BIN
elec_RC_fig2.jpg.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 KiB

BIN
elec_RC_fig3.jpg.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
elec_cap_eqn1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.9 KiB

BIN
elec_cap_eqn10.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 KiB

BIN
elec_cap_eqn2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.8 KiB

BIN
elec_cap_eqn3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.8 KiB

BIN
elec_cap_eqn4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.2 KiB

BIN
elec_cap_eqn5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 KiB

BIN
elec_cap_eqn6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.2 KiB

BIN
elec_cap_eqn7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.8 KiB

BIN
elec_cap_eqn8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.6 KiB

BIN
elec_cap_eqn9.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 KiB

BIN
elec_cap_fig1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 118 KiB

BIN
elec_cap_fig2.jpg.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

BIN
elec_cap_fig3.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

BIN
elec_cap_fig4.jpg.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.5 KiB

BIN
elec_cap_fig5.jpg.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.9 KiB

BIN
elec_cap_fig6.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

482
elec_capacitors.html Normal file
View File

@ -0,0 +1,482 @@
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricty - Capacitors - Physics 299</title>
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
255);" link="#0000ee" alink="#ff0000" vlink="#551a8b">
<center><img src="ULPhys1.gif" height="50" align="texttop"
width="189"></center>
<center>
<h1>Capacitors<br>
</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>"</i></font><font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
I used to wonder how it comes about that the electron is
negative. Negative-positive—these are perfectly symmetric in
physics. There is no reason whatever to prefer one to the
other. Then why is the electron negative? I thought about this
for a long time and at last all I could think was 'It won the
fight!' "</i></font><br>
Albert Einstein<br>
</center>
<img src="netbar.gif" height="40" align="middle" width="100%"> <br>
<blockquote>
<h2><u>Calculating Capacitance</u></h2>
</blockquote>
<ul>
</ul>
<ul>
<li>A capacitor is a system of two insulated conductors.&nbsp; <br>
</li>
</ul>
<ul>
</ul>
<ul>
<li><img alt="elec cap fig1" src="elec_cap_fig1.jpg" height="411"
align="right" width="700">The parallel plate capacitor is the
simplest example.&nbsp; When the two conductors have equal but
opposite charge, the <b>E</b> field between the plates can be
found by simple application of Gauss's Law.</li>
</ul>
<blockquote>Assuming the plates are large enough so that the <b>E</b>
field between them is uniform and directed perpendicular, then
applying Gauss's Law over surface S<sub>1</sub> we find,<br>
<div align="center"><img alt="elec cap eqn1"
src="elec_cap_eqn1.png" height="64" width="191"><br>
<div align="left">where A is the area of S<sub>1</sub>
perpendicular to the <b>E</b> field and &#963; is the surface
charge density on the plate (assumed uniform).&nbsp;
Therefore, <br>
<div align="center"><img alt="elec cap eqn2"
src="elec_cap_eqn2.png" height="60" width="67"><br>
<br>
<div align="left">everywhere between the plates.<br>
</div>
</div>
</div>
</div>
</blockquote>
<div align="center">
<div align="left">
<div align="center">
<div align="left">
<ul>
<li>The potential difference between the plates can be
found from</li>
</ul>
<div align="center"><img alt="elec cap eqn3"
src="elec_cap_eqn3.png" height="64" width="335"><br>
<blockquote>
<div align="left">where A and B are points, one on each
plate, and we integrate along an <b>E</b> field line,
d is the plate separation, A the plate area and q the
total charge on either plate.<br>
</div>
</blockquote>
<div align="left">
<ul>
<li>The capacitance (capacity) of this capacitor is
defined as,</li>
</ul>
<div align="center"><img alt="elec cap eqn4"
src="elec_cap_eqn4.png" height="63" width="148"><br>
<div align="left">
<ul>
<li>The expression for C for all capacitors is the
ratio of the magnitude of the total charge (on
either plate) to the magnitude of the potential
difference between the plates.</li>
</ul>
<ul>
<li>Units of
C:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
Coulomb/Volt = Farad,&nbsp;&nbsp;&nbsp; 1 C/V =
1 F</li>
</ul>
<blockquote><img alt="exclamation"
src="exclamation-icon.gif" height="30"
width="31"> Note that since the Coulomb is a
very large unit of charge the Farad is also a very
large unit of capacitance.&nbsp; Typical
capacitors in circuits are measured in &#956;F (10<sup>-6</sup>)
or pF (10<sup>-12</sup>).<br>
</blockquote>
<ul>
<li><img alt="exclamation"
src="exclamation-icon.gif" height="30"
width="31"> Note that the expression for the
capacitance of the parallel plate capacitor
depends on the geometric properties (A and
d).&nbsp; Even though it appears that there is
also a dependence on the charge and potential
difference (q/&#916;V), what happens is that whatever
charge you place on the capacitor the pd adjusts
itself so that the ratio&nbsp; q/&#916;V remains
constant.&nbsp;&nbsp; This is a general rule for
all capacitors.&nbsp; The capacitance is set by
the construction of the capacitor - not the
charge or voltage applied.</li>
</ul>
<ul>
<li><img alt="exclamation"
src="exclamation-icon.gif" height="30"
width="31"> The above expression for the
parallel plate capacitor is strictly only true
for an infinite parallel plate capacitor - in
which "fringing" (see above) does not
occur.&nbsp; However, so long as d is small
compared to the "size" of the plates, the simple
expression above is a good approximation.</li>
</ul>
<ul>
<li><img alt="exclamation"
src="exclamation-icon.gif" height="30"
width="31"> The parallel plate capacitor
provides an easy way to "measure" &#949;<sub>0</sub>
<br>
</li>
</ul>
<blockquote>
<div align="center"><img alt="elec cap eqn5"
src="elec_cap_eqn5.png" height="54" width="93"><br>
</div>
</blockquote>
<div align="center">
<div align="left">
<ul>
<li>As indicated above the parallel plate
capacitor is the most basic capacitor.&nbsp;
You should also be able to determine the
expressions for the capacitance of spherical
and cylindrical capacitors,</li>
</ul>
<div align="center"><img alt="elec cap fig3"
src="elec_cap_fig3.jpg" height="239"
width="311"> &nbsp; &nbsp; &nbsp; &nbsp;
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; <img
alt="elec cap fig2" src="elec_cap_fig2.jpg"
height="313" width="419"><br>
<br>
<img alt="divider" src="divider_ornbarblu.gif"
height="64" width="393"><br>
<blockquote>
<div align="left">
<h2><u>Energy and Capacitors</u></h2>
</div>
</blockquote>
<div align="left">
<ul>
<li> One of the most important uses of
capacitors is to store electrical
energy.</li>
</ul>
<blockquote>If a capacitor is placed in a
circuit with a battery, the potential
difference (voltage) of the battery will
force electric charge to appear on the
plates of the capacitor.&nbsp; The work
done by the battery in charging the
capacitor is stored as electrical
(potential) energy in the capacitor.&nbsp;
This energy can be released at a later
time to perform work.<br>
<br>
<div align="center"><img alt="elec cap
fig4" src="elec_cap_fig4.jpg"
height="204" width="297"></div>
</blockquote>
<div align="center">
<div align="left">
<ul>
<li>The work necessary to move a
charge dq onto one of the plates is
given by, dW = Vdq, where V is the
pd (voltage) of the battery (=
q/C).&nbsp; The total work to place
Q on the plate is given by,</li>
</ul>
<div align="center"><img alt="elec cap
eqn6" src="elec_cap_eqn6.png"
height="58" width="423"><br>
<blockquote>
<div align="left">which is equal to
the stored electrical potential
energy, U.<br>
</div>
</blockquote>
<div align="left">
<ul>
<li>The electrical energy actually
resides in the electric field
between the plates of the
capacitor.&nbsp; For a parallel
plate capacitor using&nbsp; C =
A&#949;<sub>0</sub>/d and&nbsp; E =
Q/A&#949;<sub>0</sub> we may write
the electrical potential energy,
<br>
</li>
</ul>
<div align="center"><img alt="elec
cap eqn7"
src="elec_cap_eqn7.png"
height="68" width="339"><br>
<blockquote>
<div align="left">(Ad) is the
volume between the plates,
therefore we define the energy
density,<br>
<br>
<div align="center"><img
alt="elec cap eqn8"
src="elec_cap_eqn8.png"
height="54" width="181"><br>
</div>
</div>
</blockquote>
<div align="left">
<div align="center">
<div align="left">
<ul>
<li>Although we have
evaluated this
expression for the
energy density for a
parallel plate capacitor
it is actually a general
expression.&nbsp;
Wherever there is an
electric field the
energy density is given
by the above.</li>
</ul>
<div align="center"><img
alt="divider"
src="divider_ornbarblu.gif"
height="64" width="393"><br>
<blockquote>
<div align="left">
<h2><u>Combinations of
Capacitors</u></h2>
</div>
</blockquote>
<div align="left">
<blockquote>It is common
to find multiple
combinations of
capacitors in
electrical
circuits.&nbsp; In the
simplest situations
capacitors can be
considered to be
connected in <b><i>series</i></b>
or in <i><b>parallel</b></i>.&nbsp;
<br>
</blockquote>
<ul>
<ul>
<li><big><b>Capacitors
in Series</b></big></li>
</ul>
</ul>
<blockquote>
<blockquote>When
different capacitors
are connected in
series the charge on
each capacitor is
the same but the
voltage (pd) across
each capacitor is
different<br>
<div align="center"><img
alt="elec cap
fig5"
src="elec_cap_fig5.jpg"
height="180"
width="312"></div>
</blockquote>
</blockquote>
<div align="center">
<div align="left"><br>
<blockquote>
<blockquote>
<div
align="left">In
this
situation,
using the fact
that V = V<sub>1</sub>
+ V<sub>2</sub>
+V<sub>3</sub>&nbsp;
we can show
that, as far
as the voltage
source is
concerned, the
capacitors can
be replaced by
a single
"equivalent"
capacitor C<sub>eq</sub>&nbsp;
given by, <br>
</div>
</blockquote>
</blockquote>
<div align="center"><img
alt="elec cap
fig9"
src="elec_cap_eqn9.png"
height="63"
width="182"><br>
</div>
<br>
<ul>
<ul>
<li><big><b>Capacitors
in Parallel</b></big></li>
</ul>
</ul>
<blockquote>
<blockquote>For
capacitors
connected in
parallel it is
the voltage
which is same
for each
capacitor, the
charge being
different.<br>
<br>
<div
align="center"><img
alt="elec cap
fig6"
src="elec_cap_fig6.jpg"
height="176"
width="360"><br>
<div
align="left"><br>
Using the fact
that Q<sub>Total</sub>=
Q<sub>1</sub>
+ Q<sub>2</sub>
+ Q<sub>3</sub>
we can show
that the
equivalent
capacitor, C<sub>eq</sub>&nbsp;
is given by,<br>
<br>
<div
align="center"><img
alt="elec cap
eqn10"
src="elec_cap_eqn10.png"
height="29"
width="172"><br>
</div>
</div>
</div>
</blockquote>
</blockquote>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<ul>
</ul>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<blockquote> </blockquote>
<ul>
</ul>
<blockquote> </blockquote>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<blockquote>
<div align="center"> </div>
</blockquote>
<p> <img src="netbar.gif" height="40" width="100%"> </p>
<center>
<p class="MsoNormal"><span style="color: rgb(255, 0, 0);
font-style: italic;">
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
At the electric company: <i>"We would be delighted if you
send in your bill. However, if you don't, you will be."</i></span><br>
<br>
</p>
<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92"> </p>
</center>
<p><br>
</p>
</body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.0 KiB

101
elec_chargemotion.html Normal file
View File

@ -0,0 +1,101 @@
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricity - Charged Particle Motion in an Electric Field -
Physics 299</title>
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
255);" link="#0000ee" alink="#ff0000" vlink="#551a8b">
<center>
<h1> <img src="ULPhys1.gif" height="50" align="texttop"
width="189"></h1>
</center>
<center>
<h1>Charged Particle Motion in an Electric Field <br>
</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>"</i></font><font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
The hardest thing in the world to understand is the income tax"</i></font><br>
Albert Einstein<br>
</center>
<img src="netbar.gif" height="40" align="middle" width="100%"> <br>
<ul>
</ul>
<ul>
<li>Having determined the electric field we now want to determine
the behaviour of a point charge, q<sub>0</sub>, placed in this
field.</li>
</ul>
<ul>
<li>The force on the charge is given by&nbsp; <b>F</b> = q<sub>0</sub><b>E</b>.&nbsp;
But Newton's second law tells us that <b>F</b> = m<b>a</b>, so
that the acceleration of the particle can be written, <b>a</b>
= (q<sub>0</sub>/m)<b>E</b>.</li>
</ul>
<ul>
<li>Once we have an expression for the acceleration it is usually
possible to determine the trajectory of the particle, although
in the general case this will involve solving differential
equations.&nbsp; However, when <b>E</b> is constant the
acceleration is constant which allows us to use the kinematic
equations describing motion under constant acceleration from the
beginning of the first semester of this course (Physics
298).&nbsp; Important equations in Physics should never be
forgotten <img alt="sadface" src="sadface.jpg" height="24"
width="24">.&nbsp; <br>
</li>
</ul>
<ul>
<li>In two dimensions, with <b>E</b> constant in one direction
and zero in the other, charged particle motion can be treated in
the same way as projectile motion of a particle under the
influence of a (constant) gravitational field.</li>
</ul>
<div align="center"><img alt="charged particle motion"
src="elec_charged_particle_motion.jpg" height="172" width="292"><br>
</div>
<ul>
</ul>
<ul>
</ul>
<div align="center"> </div>
<div style="text-align: left;"><img src="netbar.gif" height="40"
width="100%"> </div>
<center><span style="font-size: 12pt; font-family: &quot;Times New
Roman&quot;;"><span style="color: rgb(255, 0, 0); font-style:
italic;"></span></span><span style="font-size: 12pt;
font-family: &quot;Times New Roman&quot;;"><span style="color:
rgb(255, 0, 0); font-style: italic;">
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</span></span><br>
<i><font color="#ff0000">What do you get if you have Avogadro's
number of donkeys?
Answer: molasses (a mole of asses)</font></i><br>
<br>
<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92"> </p>
</center>
<p><br>
</p>
</body>
</html>

BIN
elec_circuit.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.9 KiB

242
elec_circuits_RC.html Normal file
View File

@ -0,0 +1,242 @@
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricity - RC circuits - Physics 299</title>
<meta content="C. L. Davis" name="author">
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
255);" link="#0000ee" alink="#ff0000" vlink="#551a8b">
<center>
<h1> <img src="ULPhys1.gif" height="50" align="texttop"
width="189"></h1>
</center>
<center>
<h1>RC Circuits<br>
</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</i></font><font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</i></font>
<div class="copy-paste-block"><font color="#ff0000"><i><span
class="bqQuoteLink">"A</span></i></font><font
color="#ff0000"><i><span class="bqQuoteLink"> fact is a simple
statement that everyone believes.&nbsp; It is innocent,
unless found guilty.&nbsp; A hypothesis is a novel
suggestion that no one wants to believe.&nbsp; It is
guilty, until found effective</span></i><span></span>"</font><br>
</div>
<font color="#ff0000"><i> </i><font color="#000000">Edward Teller</font></font><br>
</center>
<img src="netbar.gif" height="40" align="middle" width="100%"> <br>
<br>
<div align="center">
<h2><u><font color="#3333ff">CHARGING</font></u></h2>
</div>
<ul>
<li><img alt="fig1" src="elec_RC_fig1.jpg" height="344"
align="right" width="532">An example of a series RC circuit is
shown at right.&nbsp; With the emf included in the circuit,
applying the loop theorem we find</li>
</ul>
<div align="center"><img alt="eqn1" src="elec_RC_eqn1.jpg"
height="53" width="165"><br>
<blockquote>
<div align="left">where q/C is the voltage drop across the
capacitor and i is the current in the circuit.<br>
</div>
</blockquote>
<div align="left">
<ul>
<li>Using the fact that i = dq/dt, we obtain</li>
</ul>
<div align="center"><img alt="eqn2" src="elec_RC_eqn2.jpg"
height="76" width="155"><br>
<div align="left">
<ul>
<li>This is a "simple" differential equation the solution
of which can be written</li>
</ul>
<div align="center"><img alt="eqn3" src="elec_RC_eqn3.jpg"
height="38" width="197"><br>
<blockquote>
<div align="left">or<br>
<div align="center"><img alt="eqn4"
src="elec_RC_eqn4.jpg" height="68" width="169"><br>
</div>
</div>
</blockquote>
<div align="left">
<ul>
<li>The voltage across the capacitor, V<sub>C</sub> =
q/C and the voltage across the resistor, V<sub>R</sub>
= iR.&nbsp; Using the equations above we find that
the dependence of these voltages on time is shown
below</li>
</ul>
<div align="center"><img alt="fig2"
src="elec_RC_fig2.jpg" height="286" width="399"><br>
<br>
<div align="left">
<ul>
<li><img alt="exclamation"
src="exclamation-icon.gif" height="30"
width="31"> Note that the time on the
horizontal axis is measured in units of &#964; = RC,
the capacitative time constant.</li>
</ul>
<ul>
<li><img alt="exclamation"
src="exclamation-icon.gif" height="30"
width="31"> After one time constant V<sub>C</sub>
has reached 63% (1 - e<sup>-1</sup>) of its
maximum value and V<sub>R</sub> has 37% (1/e) of
its final value.</li>
</ul>
<div align="center"><img alt="divider"
src="divider_ornbarblu.gif" height="64"
width="100%"><br>
<h2><font color="#3333ff"><u>DISCHARGING</u></font></h2>
<div align="left">
<ul>
<li><img alt="fig1" src="elec_RC_fig1.jpg"
height="344" align="right" width="532">Now
switch the emf out of the circuit and
reapply the loop theorem</li>
</ul>
<div align="center"><img alt="eqn5"
src="elec_RC_eqn5.jpg" height="53"
width="132"><br>
<blockquote>
<div align="left">which gives<br>
<div align="center"><img alt="eqn6"
src="elec_RC_eqn6.jpg" height="65"
width="137"><br>
<br>
<div align="left">which has the solution<br>
<div align="center"><img alt="eqn7"
src="elec_RC_eqn7.jpg" height="44"
width="171"><br>
<div align="left">and<br>
<div align="center"><img
alt="eqn8"
src="elec_RC_eqn8.jpg"
height="70" width="192"><br>
</div>
<br>
</div>
<br>
<div align="left">where C&#949; is the
initial charge on the capacitor
and &#949;/R is the initial voltage
across the capacitor.<br>
</div>
</div>
</div>
</div>
</div>
</blockquote>
<div align="left">
<div align="center">
<div align="left">
<div align="center">
<div align="left">
<ul>
<li><img alt="fig3"
src="elec_RC_fig3.jpg"
height="410" align="right"
width="316">The time
dependence of V<sub>C</sub> and
V<sub>R</sub> (where V<sub>R</sub>
is proportional to the current
in the capacitor) are shown at
right.</li>
</ul>
<ul>
<li><img alt="exclamation"
src="exclamation-icon.gif"
height="30" width="31"> Once
again the time axis is measured
in units of RC.</li>
</ul>
<ul>
<li><img alt="exclamation"
src="exclamation-icon.gif"
height="30" width="31"> After
one time constant V<sub>C</sub>
has decreased to 37% (1/e) of
its initial value and |V<sub>R</sub>|
has decreased to 37% (1/e) of
its initial value. </li>
</ul>
</div>
</div>
</div>
</div>
</div>
<blockquote>
<div align="left">
<div align="center">
<div align="left">
<div align="center">
<div align="left"> </div>
</div>
</div>
</div>
</div>
</blockquote>
</div>
</div>
</div>
<ul>
</ul>
</div>
</div>
</div>
<div align="left">
<div align="center"><br>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<ul>
</ul>
<div align="left"> </div>
<img src="netbar.gif" height="40" width="100%">
<center>
<p style="color: rgb(255, 0, 0); font-style: italic;"
class="MsoNormal">
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</p>
<font color="#ff0000"><i>Q: What did one quantum physicist say
when he wanted to fight another quantum physicist?<br>
A: Let me <font color="#ff0000">atom</font>. </i></font><br>
<br>
&nbsp;<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92"> </p>
</center>
<p><br>
</p>
</body>
</html>

BIN
elec_circuits_eqn1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.5 KiB

BIN
elec_circuits_fig1.jpg.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.9 KiB

BIN
elec_circuits_fig2.jpg.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 KiB

BIN
elec_circuits_fig3.jpg.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.4 KiB

BIN
elec_circuits_fig4.jpg.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 KiB

BIN
elec_circuits_fig5.jpg.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 KiB

211
elec_circuits_kirchoff.html Normal file
View File

@ -0,0 +1,211 @@
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricity - Kirchoff's Laws - Physics 299</title>
<meta content="C. L. Davis" name="author">
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
255);" link="#0000ee" alink="#ff0000" vlink="#551a8b">
<center>
<h1> <img src="ULPhys1.gif" height="50" align="texttop"
width="189"></h1>
</center>
<center>
<h1>Kirchhoff's Laws<br>
</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</i></font><font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</i></font>
<div class="copy-paste-block"><font color="#ff0000"><i><span
class="bqQuoteLink">"An expert is a man who has made all
the mistakes which can be made, in a narrow field.</span></i><span></span>
</font>"<br>
</div>
<font color="#ff0000"><i> </i><font color="#000000">Niels Bohr</font></font><br>
</center>
<img src="netbar.gif" height="40" align="middle" width="100%"> <br>
<ul>
<li>
<div align="left">The most common general method to analyze
electrical circuits is by use of Kirchhoff's Laws.<img
alt="kirchoff" src="kirchhoff.jpg" height="133"
align="middle" width="84"></div>
</li>
</ul>
<blockquote>
<h3><u><img alt="staricon" src="StarIconGreen.png" height="48"
align="middle" width="50"> Junction Theorem</u></h3>
</blockquote>
<blockquote>
<div align="center"><b><big><font color="#3333ff"><i>At any
junction in a circuit the current entering the junction
must equal the current leaving the junction.</i><i><br>
</i></font></big></b></div>
<br>
<div align="center">(This is nothing more than a statement of
conservation of charge)<br>
</div>
</blockquote>
<blockquote>
<h3><u><img alt="staricon" src="StarIconGreen.png" height="52"
align="middle" width="53"> Loop Theorem</u></h3>
<p align="center"><font color="#3333ff"><b><big><i>The sum of the
changes in potential when traversing any complete</i><i>
loop is zero.</i></big></b></font><br>
</p>
<p align="center">(This is equivalent to conservation of energy)<br>
</p>
</blockquote>
<ul>
</ul>
<div align="center"><img alt="divider" src="divider_ornbarblu.gif"
height="64" width="393"></div>
<ul>
<li>
<h3><u>Conventions</u></h3>
</li>
</ul>
<blockquote>As usual, in order to ensure consistent results from
application of these laws, we must adhere to several conventions
concerning the currents and potentials in circuits.<br>
<u><b><br>
Potentials</b></u>:<br>
<ol>
<li>When a resistive device is traversed in the direction of
current flow the change in potential is -iR.&nbsp; Conversely,
if the resistance is traversed opposite to the direction of
the current the potential change is +iR.</li>
<li>When an emf is traversed in the direction of the emf the
change in potential is +&#949;.&nbsp; Conversely, if the emf is
traversed opposite to the emf direction the change in
potential is -&#949;.</li>
</ol>
<p><br>
<u><b>Currents:</b></u><br>
</p>
<blockquote>
<p>In setting up a problem, the current direction in any
particular circuit element is assigned arbitrarily.&nbsp;
Kitchoff's laws are then applied to the circuit using these
current directions.&nbsp; After solving the resulting
equations if a current is negative that means the "actual"
current direction is opposite the arbitrarily chosen
direction.<br>
</p>
</blockquote>
<ol>
</ol>
<div align="center"><img alt="divider" src="divider_ornbarblu.gif"
height="64" width="393"><br>
</div>
</blockquote>
<ul>
<li>
<h3><u>Application of Kirchhoff's Laws</u></h3>
</li>
</ul>
<blockquote>
<p>Kirchhoff's laws can be applied to <b>any circuit</b> to
obtain a set of equations relating the currents, resistances and
emfs in the circuit.&nbsp; These equations can then be solved
for the unknown quantities in the circuit.&nbsp; For any circuit
follow the steps below.<br>
</p>
</blockquote>
<blockquote>
<ol>
<li>Label the current flowing in each part of the circuit,
bearing in mind that current will "split" on reaching a
junction.&nbsp; The direction of the defined direction of the
current does not matter - see current convention above.</li>
<li>At each junction in the circuit use the junction theorem to
write down the equations relating the currents entering and
leaving.&nbsp;</li>
<li>Define all possible loops in the circuit and label.</li>
<li>For each loop choose a starting location then use the loop
theorem to write down the equation relating changes in
potential which must be zero after traversing the complete
loop.</li>
<li>Solve the set of equations from 2. and 4. to obtain the
unknown parameters of the circuit.</li>
</ol>
<p><br>
As an example, consider the circuit below.&nbsp; With the 3 emfs
we cannot use the series/parallel analysis.<br>
</p>
<div align="center"><img alt="fig1" src="elec_kirch_fig1.gif"
height="185" width="435"></div>
</blockquote>
<blockquote><u>Junctions:</u><br>
<blockquote>a:&nbsp;&nbsp; I<sub>1</sub> = I<sub>2</sub> + I<sub>3</sub>
<br>
b:&nbsp;&nbsp; I<sub>3</sub> + I<sub>2</sub> = I<sub>3</sub> <br>
<br>
</blockquote>
<u>Loops:</u><br>
<blockquote>1 (including &#949;<sub>1</sub> starting at a traversing
clockwise):&nbsp; - I<sub>3</sub>R<sub>4</sub> - &#949;<sub>3</sub> -
I<sub>1</sub>R<sub>2</sub> + &#949;<sub>1</sub> - I<sub>1</sub>R<sub>1</sub>
= 0<br>
2 (including &#949;<sub>2</sub> starting at a traversing clockwise):
&nbsp; - I<sub>2</sub>R<sub>3</sub> - &#949;<sub>2</sub> + &#949;<sub>3</sub>
+ I<sub>3</sub>R<sub>4</sub> = 0<br>
3 (including &#949;1 and &#949;<sub>2</sub> starting at a traversing
clockwise):&nbsp; - I<sub>2</sub>R<sub>3</sub> - &#949;<sub>2</sub> -
I<sub>1</sub>R<sub>2</sub> + &#949;<sub>1</sub> - I<sub>1</sub>R<sub>1</sub>
= 0<br>
</blockquote>
Looking at these equations it is clear that the two junction
equations are equivalent, and that loop equation 3 is simply the
sum of loop equations 1 and 2.&nbsp; Therefore there are only 3
independent equations (a, 1 and 2), which we can solve for, say,
the currents I<sub>1</sub>, I<sub>2</sub> and I<sub>3</sub>.<br>
<br>
<img alt="exlamation" src="exclamation-icon.gif" height="30"
width="31"> Note that in more complicated circuits there will be
many more junctions and a large number of possible loops.&nbsp;
You only need apply the loop theorem to as many loops to obtain
the number of independent equations necessary to determine the
unknown parameters.&nbsp; That is if you have 3 unknown
quantities, you'll need a total of 3 independent equations.<br>
</blockquote>
<ul>
</ul>
<div align="left"> </div>
<img src="netbar.gif" height="40" width="100%">
<center>
<p style="color: rgb(255, 0, 0); font-style: italic;"
class="MsoNormal">
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</p>
<font color="#ff0000"><i>What do you get if you have Avogadro's
number of donkeys?<br>
&nbsp;Answer: molasses (a mole of asses)</i></font><br>
<br>
&nbsp;<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92"> </p>
</center>
<p><br>
</p>
</body>
</html>

140
elec_circuits_sp.html Normal file
View File

@ -0,0 +1,140 @@
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricity - Series and Parallel Circuits - Physics 299</title>
<meta content="C. L. Davis" name="author">
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
255);" link="#0000ee" alink="#ff0000" vlink="#551a8b">
<center>
<h1> <img src="ULPhys1.gif" height="50" align="texttop"
width="189"></h1>
</center>
<center>
<h1>Series and Parallel Circuits<br>
</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>"</i></font><font color="#ff0000"><i> </i></font><font
color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
It would be better for the true physics if there were no
mathematicians on earth." <br>
</i><font color="#000000">Daniel Bernoulli</font></font><br>
</center>
<img src="netbar.gif" height="40" align="middle" width="100%"> <br>
<ul>
<li>You may already be familiar with the idea of circuits with
resistors in series or parallel or some combination of the two.</li>
</ul>
<ul>
<ul>
<li>
<h3><font color="#3333ff">Series</font></h3>
</li>
</ul>
</ul>
<blockquote>
<blockquote><img alt="fig1" src="elec_circuits_fig1.jpg"
height="168" align="right" width="273">The same current flows
in each resistor, the voltages across them are typically
different, where V = V<sub>1</sub> + V<sub>2</sub> + V<sub>3</sub>
which leads to the equivalent resistance formula<br>
<br>
<div align="center">R<sub>eq</sub> = R<sub>1</sub> + R<sub>2</sub>
+ R<sub>3</sub><br>
</div>
</blockquote>
</blockquote>
<div align="left">
<ul>
<ul>
<li>
<h3><font color="#3333ff">Parallel</font></h3>
</li>
</ul>
</ul>
<blockquote>
<blockquote>The potential difference across each resistor is the
same, but the currents through them are typically different,
where I = I<sub>1</sub> + I<sub>2</sub> + I<sub>3</sub>.&nbsp;
This lead to the equivalent resistance formula,<br>
<div align="center"><img alt="eqn1"
src="elec_circuits_eqn1.jpg" height="58" width="152"><br>
<br>
<div align="left">Note that both of the diagrams below
represent resistors in parallel.<br>
</div>
</div>
<img alt="fig2" src="elec_circuits_fig2.jpg" height="173"
width="312"> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;
<img alt="fig3" src="elec_circuits_fig3.jpg" height="179"
width="301"><br>
<br>
</blockquote>
</blockquote>
<ul>
<ul>
<li>
<h3><font color="#3333ff">Combinations</font></h3>
</li>
</ul>
</ul>
<blockquote>
<blockquote>Some circuits can be analysed as combinations of
series and parallel circuits. In the circuit below R<sub>2</sub>
and R<sub>3</sub> are in parallel, their equivalent resistance
is then in series with R<sub>1</sub>.<br>
<div align="center"><img alt="fig4"
src="elec_circuits_fig4.jpg" height="181" width="390"><br>
</div>
</blockquote>
<img alt="exclamation" src="exclamation-icon.gif" height="30"
width="31"> Note that it is not possible to represent all
circuits as combinations of series and parallel elements, this
is most obvious in many cases where there is more than one
battery in the circuit, see example below.&nbsp; To analyse this
type of circuit we must use Kirchhoff's Laws.<br>
<br>
<div align="center"><img alt="fig5" src="elec_circuits_fig5.jpg"
height="185" width="435"><br>
</div>
<div align="center"><br>
</div>
<blockquote>
<div align="center"> </div>
</blockquote>
</blockquote>
</div>
<img src="netbar.gif" height="40" width="100%">
<center>
<p style="color: rgb(255, 0, 0); font-style: italic;"
class="MsoNormal">
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</p>
<font color="#ff0000"><i>Got mole problems? Call Avogadro at
602-1023.</i></font><br>
<br>
&nbsp;<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92"> </p>
</center>
<p><br>
</p>
</body>
</html>

147
elec_condins.html Normal file
View File

@ -0,0 +1,147 @@
<!DOCTYPE HTML PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=ISO-8859-1">
<meta name="GENERATOR"
content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0 alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricity - Conductors and Insulators - Physics 299</title>
<meta content="C. L. Davis" name="author">
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);"
alink="#ff0000" link="#0000ee" vlink="#551a8b">
<center>
<h1> <img src="ULPhys1.gif" align="texttop" height="50" width="189"></h1>
</center>
<center>
<h1>Conductors and Insulators</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>"What is the use of a new-born child ?"</i></font><br>
Benjamin Franklin<br>
<small><small>(when asked what was the use of &nbsp;a new invention)</small></small><br>
</center>
<img src="netbar.gif" align="middle" height="40" width="100%"> <br>
<center><img src="misc1.gif" align="middle" height="32" width="288">
</center>
<ul>
<li> Moving electric charges constitute what is know as an electric
current.&nbsp; It is the electric currents in semi-conductor devices
which are responsible for the electronic technology in today's society.<br>
<br>
</li>
<ul>
<li> <b>Conductors</b> are materials which allow the free movement
of electric charge.&nbsp; Examples include,</li>
<ul>
<li> Metals</li>
<li> Some liquids</li>
<li> Gas plasmas<br>
<br>
</li>
</ul>
<li> <b>Insulators</b> (or non conductors) are materials which
provide
significant resistance to the flow of electric charge.&nbsp; Examples
include,</li>
<ul>
<li> Non metals - plastic, wood, glass, rubber etc.</li>
<li> Gases<br>
<br>
</li>
</ul>
<li> <b>Semi-conductors</b> are materials whose resistance to
current flow
falls between conductors and insulators.&nbsp; There are very few such
materials, but their importance in electronic technology cannot be
emphasized enough.&nbsp; Examples,</li>
<ul>
<li> Silicon</li>
<li> Germanium<br>
<br>
</li>
</ul>
</ul>
<li> <b>Mechanisms of conduction:</b><img src="science.gif"
align="middle" height="32" width="288"> </li>
<ul>
<li> Metals (solid)</li>
<ul>
<li> Each atom in the solid is "fixed", forming a lattice.</li>
<li> Outer electrons in a metal are weakly bound to the atomic
nucleus.</li>
<li> When an external electric field is applied these outer
electrons move
through the material creating an electric current.</li>
</ul>
<li> Liquid conductors and gas plasmas</li>
<ul>
<li> Conducting liquids and gases are comprised of positive and
negative
ions (charged particles).</li>
<li> Both positive and negative ions move when an external
electric field
is applied, thus creating the current.</li>
<li> A positive charge moving to the right creates the same
current as
an equal negative charge moving to the left.</li>
</ul>
<li> Insulators</li>
<ul>
<li> All electrons in these materials are tightly bound to the
atomic nuclei.&nbsp; External electric fields are typically not large
enough to cause any flow of charge.</li>
</ul>
<li> Semi-conductors</li>
<ul>
<li> These materials have a small number of weakly bound
electrons, the
number of which is very&nbsp; dependent on the temperature and
potential
difference applied across the material.</li>
<br>
&nbsp;
</ul>
<li> It is important to realise that because sustained electric
currents
only occur when a potential difference is maintained in a closed
circuit,
as many charge carriers enter as leave any part of the circuit.&nbsp;
In
other words electric current is not "used up"; it has the same value
everywhere in the circuit.<br>
<br>
</li>
</ul>
</ul>
<p><br>
<img src="netbar.gif" height="40" width="100%"> </p>
<center>
<p class="MsoNormal"><span
style="color: rgb(255, 0, 0); font-style: italic;">Marilyn Monroe
suggests to Einstein: What do you say,
professor, shouldn't we marry and have a little baby together: what a
baby it
would be - my looks and your intelligence!</span><br
style="color: rgb(255, 0, 0); font-style: italic;">
<span style="color: rgb(255, 0, 0); font-style: italic;">Einstein: I'm
afraid, dear lady, it might be the other way around...</span><br>
Albert Einstein<br>
</p>
<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92">
</p>
</center>
<p><br>
</p>
</body>
</html>

96
elec_contdist.html Normal file
View File

@ -0,0 +1,96 @@
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricity - Electric Field Due to Continuous Charge
Distributions - Physics 299</title>
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
255);" link="#0000ee" alink="#ff0000" bgcolor="#ff0000"
text="#000000" vlink="#551a8b">
<center>
<h1> <img src="ULPhys1.gif" height="50" align="texttop"
width="189"></h1>
</center>
<center>
<h1>Electric Field Due Continuous Charge Distribtuions<br>
</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>"</i></font><font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
Common sense is the collection of prejudices acquired by age
eighteen"</i></font><br>
Albert Einstein<br>
</center>
<img src="netbar.gif" height="40" align="middle" width="100%"> <br>
<ul>
</ul>
<ul>
<li>Electric charge is a property of individual particles -
protons, electrons etc.&nbsp; But since these particles are
extremely small it is often convenient to consider charge to be
continuously distributed.&nbsp; <br>
</li>
</ul>
<ul>
<li>These distributions can be over a line (one dimension), an
area (two dimensions) or a volume (three dimensions).</li>
</ul>
<ul>
<li>In order to determine the electric field due to a continuous
charge distribution we "sum" the fields due to the individual
"elements" that comprise the distribution, by integrating over
the line, area or volume in question.&nbsp; For example in the
example below charge is distributed uniformly over the rod on
the x axis.&nbsp; To determine the electric field at point P, we
write down the expression for the field at P due to the "point"
charge dq located at "x" as shown, then integrate over x from x
= 0 to x = x. <br>
</li>
</ul>
<div align="center"><img alt="contin charge dist"
src="elec_continchgdist.jpg" height="244" width="272"><br>
</div>
<ul>
</ul>
<br>
<ul>
</ul>
<div align="center"> </div>
<div style="text-align: left;"><img src="netbar.gif" height="40"
width="100%"> </div>
<center><span style="font-size: 12pt; font-family: &quot;Times New
Roman&quot;;"><span style="color: rgb(255, 0, 0); font-style:
italic;"></span></span><span style="font-size: 12pt;
font-family: &quot;Times New Roman&quot;;"><span style="color:
rgb(255, 0, 0); font-style: italic;">
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</span></span><br>
<i><font color="#ff0000">Overheard after a student failed a
physics test miserably:
Nuclear, Hydrogen, Atomic, My test- They can all be bombs.</font></i><br>
<span style="font-size: 12pt; font-family: &quot;Times New
Roman&quot;;"><span style="color: rgb(255, 0, 0); font-style:
italic;"></span></span> <br>
<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92"> </p>
</center>
<p><br>
</p>
</body>
</html>

BIN
elec_continchgdist.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.3 KiB

154
elec_coulomb.html Normal file
View File

@ -0,0 +1,154 @@
<!DOCTYPE HTML PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=ISO-8859-1">
<meta name="GENERATOR"
content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0 alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricity - Coulomb's Law - Physics 299</title>
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);"
alink="#ff0000" link="#0000ee" vlink="#551a8b">
<center>
<h1> <img src="ULPhys1.gif" align="texttop" height="50" width="189"></h1>
</center>
<center>
<h1>Coulomb's Law</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>"When man wanted to make a machine that would
walk
he created the wheel, which does not resemble a leg"</i></font><br>
Guillaume Apollinaire<br>
</center>
<img src="netbar.gif" align="middle" height="40" width="100%"> <br>
&nbsp;
<ul>
<li> The magnitude of the force of attraction (or repulsion), F<sub>12</sub>
between two point charges q<sub>1</sub> and q<sub> 2&nbsp;</sub> is
given by Coulomb's Law.</li>
<center>
<p><br>
<img alt="" src="elec_coulomb_eqn1.gif"
style="width: 80px; height: 47px;"> <br>
</p>
</center>
<p>where R<sub>12</sub>&nbsp; is the distance between the
charges.&nbsp; k is a constant of proportionality known as the Coulomb
constant, having the value 9 x
10<sup>9</sup>&nbsp; N.m<sup>2</sup> / C<sup>2</sup>&nbsp; in a
vacuum.&nbsp;</p>
<p><img style="width: 31px; height: 30px;" alt="exclamation"
src="exclamation-icon.gif"> Note that the Coulomb constant, k, is
often replaced with (1/4&#960; &#949;<sub>0</sub>), where
&#949;<sub>0</sub>is the permittivity of the vacuum (more later).<br>
</p>
<li> The direction of this force is along the line joining the two
charges
with the sense determined by the relative signs of the charges</li>
<p><br>
</p>
<center>
<p><img src="coulaw1.gif" height="112" width="182"> </p>
</center>
<li> Note that the force on each charge has the same magnitude (as
required by Newton's third law of motion).</li>
<br>
&nbsp;
<li> For two 1 Coulomb charges separated by 1 metre the
magnitude
of the force is given by,
<center> <br>
F = (9 x 10<sup>9</sup>&nbsp; x 1 x 1 )/ 1&nbsp; =&nbsp; 9 x 10<sup>9</sup>
&nbsp; Newtons</center>
<p>This is an <b><i>extremely large</i></b> force (sufficient to
move Mt. Everest with an acceleration of 1cm/s<sup>2</sup>).&nbsp; The
Coulomb
is a <b><i>very large</i></b> unit.&nbsp; Typical macroscopic charges
are measured in micro-coulombs (10<sup>-6</sup> C). </p>
</li>
<li>To handle situations with more than one charge, the charges must
be treated in pairs, so that the overall force on one charge will be
the <span style="font-weight: bold;">vector</span> sum of the force
due to each of the other charges.&nbsp; For example the force on q<sub>1</sub>
due to all other charges q<sub>2</sub>, q<sub>3</sub> , q<sub>4</sub>...
would
be
given
by,</li>
</ul>
<div style="text-align: center;"><span style="font-weight: bold;">F</span><sub
style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = F</span><sub
style="font-weight: bold;">21</sub><span style="font-weight: bold;"> +
F</span><sub style="font-weight: bold;">31</sub><span
style="font-weight: bold;"> + F</span><sub style="font-weight: bold;">41</sub><span
style="font-weight: bold;"> + ...</span><br>
<div style="text-align: left;">
<ul>
<li><img style="width: 79px; height: 43px;" alt="hot" src="hot.gif">Notice
the
similarity
of
Coulomb's Law to Newton's Law of Gravitation</li>
</ul>
<div style="text-align: center;"><img
style="border: 0px solid ; width: 114px; height: 62px;" alt="eqn1"
src="grav_eqn1.jpg"><br>
<div style="text-align: left; margin-left: 40px;"><br>
both are "inverse square" laws.&nbsp; Substitute charge for mass and
"k" for "G" and you have Coulomb's law.<br>
<img style="width: 31px; height: 30px;" alt="exclamation"
src="exclamation-icon.gif"> The relative magnitudes of the Coulomb
constant, k = 9 x 10<sup>9</sup> and the gravitational constant, G =
6.67 x 10<sup>-11</sup>, is an indication of the relative strengths of
the two forces.&nbsp; The electrical force of attraction is much, much
stronger than the gravitational force of attraction.<br>
</div>
</div>
</div>
</div>
<ul>
</ul>
<p><br>
<img src="netbar.gif" height="40" width="100%"> </p>
<center><span
style="font-size: 12pt; font-family: &quot;Times New Roman&quot;; color: rgb(255, 0, 0); font-style: italic;">"The
wireless
telegraph
is
not
difficult
to
understand. The ordinary telegraph is like a very long cat. You pull
the tail
in </span><st1:state style="color: rgb(255, 0, 0); font-style: italic;"><st1:place><span
style="font-size: 12pt; font-family: &quot;Times New Roman&quot;;">New York</span></st1:place></st1:state><span
style="font-size: 12pt; font-family: &quot;Times New Roman&quot;; color: rgb(255, 0, 0); font-style: italic;">,
and
it
meows
in
</span><st1:city style="color: rgb(255, 0, 0); font-style: italic;"><st1:place><span
style="font-size: 12pt; font-family: &quot;Times New Roman&quot;;">Los Angeles</span></st1:place></st1:city><span
style="font-size: 12pt; font-family: &quot;Times New Roman&quot;;"><span
style="color: rgb(255, 0, 0); font-style: italic;">. The wireless is
the same, only without the cat."</span><br>
Albert Einstein<br>
</span><br>
<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92">
</p>
</center>
<p><br>
</p>
</body>
</html>

BIN
elec_coulomb_eqn1.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 272 B

391
elec_current.html Normal file
View File

@ -0,0 +1,391 @@
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricity - Electric Current - Physics 299</title>
<meta content="C. L. Davis" name="author">
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
255);" alink="#ff0000" link="#0000ee" vlink="#551a8b">
<center>
<h1> <img src="ULPhys1.gif" align="texttop" height="50"
width="189"></h1>
</center>
<center>
<h1>Electric Current, Resistance and Power<br>
</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>"When I find myself in the company of
scientists, I feel like a shabby curate who has strayed by
mistake into a drawing room full of dukes"</i></font><br>
W. H. Auden<br>
</center>
<img src="netbar.gif" align="middle" height="40" width="100%"> <br>
<br>
<blockquote>
<h2><font color="#3333ff"><u>Electric Current</u></font><br>
</h2>
</blockquote>
<ul>
<li> Electric current is equal to the rate at which charge passes
a fixed point in space.</li>
<br>
<div align="center"><img alt="eqn9" src="elec_current_eqn9.jpg"
height="49" width="55"></div>
<center><br>
</center>
Current is measured in <a
href="http://www-gap.dcs.st-and.ac.uk/%7Ehistory/Mathematicians/Ampere.html">Amperes:</a>
<img src="Ampere.jpg" align="middle" height="109" width="90"> <br>
<br>
<center>1 <a
href="http://www.npl.co.uk/server.php?show=ConWebDoc.1559">
Ampere</a> = 1 Coulomb/second</center>
<br>
Although from the above definition it looks as though the Ampere
is defined in terms of the Coulomb in fact it is the Ampere which
is the basic unit, the Coulomb is the dervived unit. The Ampere is
defined in terms of the force between two parallel wires carrying
current as we will see later. <br>
<br>
<li>It is important to realize that the value of the current is
constant, whatever the cross section of the conductor.&nbsp; If
this were not so then charge would "pile up" at points along a
conductor.</li>
<br>
<li>When you flip a switch a light bulb turn on instantly.&nbsp;
In fact the current moves at speeds close to the speed of
light.&nbsp; However, the charge carriers, electrons in a
metallic wire, travel at a much slower velocity - the <span
style="font-weight: bold;">drift velocity</span>. <br>
Consider a wire of length l, cross section A, with n conduction
electrons per unit volume.&nbsp; The current in the wire can be
written,</li>
</ul>
<div style="text-align: center;"><img style="width: 202px; height:
60px;" alt="eqn1" src="elec_current_eqn1.jpg"><br>
<div style="text-align: left; margin-left: 40px;">where e is the
charge on the electron and v<sub>d</sub> is the drift velocity.<br>
</div>
<div style="text-align: left;">
<ul>
<li><span style="font-weight: bold; font-style: italic;
text-decoration: underline;">Current Density, J</span>
(A/m<sup>2</sup>) is defined by,</li>
</ul>
<div style="text-align: center;"><img style="width: 126px;
height: 54px;" alt="eqn2" src="elec_current_eqn2.jpg"><br>
<br>
<div style="text-align: left; margin-left: 40px;">physically,
J represents charge movement at a particular place within a
conductor, e.g. when A is large J is small, when A is small
J is large.<br>
The general relationship between I and J is<br>
<div style="text-align: center;"><img style="width: 103px;
height: 38px;" alt="eqn3" src="elec_current_eqn3.jpg"><br>
<div style="text-align: left;">The current is the flux of
J through a surface.<br>
<br>
<img style="width: 31px; height: 30px;"
alt="exclamation" src="exclamation-icon.gif"> <span
style="font-weight: bold; text-decoration: underline;">Important:</span>&nbsp;
The
current,
I,
is
a scalar quantity, whereas J is a vector.&nbsp; I has a
"sense" in that we draw arrows to represent its
"direction", but does not obey the rules of vector
algebra.<br>
</div>
</div>
</div>
</div>
</div>
</div>
<ul>
<br>
<li> <img style="width: 15px; height: 22px;" alt="confused"
src="confused_smiley.gif"> <span style="font-weight: bold;
text-decoration: underline;">Historical quirk.</span>&nbsp;
The direction of current flow is defined as the direction in
which a positive charge will move.&nbsp; But in solid metallic
conductors the charge carriers are electrons (negative charges)
which actually move in the opposite direction.&nbsp; Negative
charges moving right to left are exactly equivalent to positive
charges moving left to right.</li>
</ul>
<div align="center"><img alt="divider" src="divider_ornbarblu.gif"
height="64" width="393"><br>
<blockquote>
<div align="left">
<h2><font color="#3333ff"><u>Resistance</u></font></h2>
</div>
</blockquote>
</div>
<ul>
</ul>
<ul>
<li>In metallic conductors the electric field and current density
are in the same direction and are found to be proportional to
each other,</li>
</ul>
<div style="text-align: center;"><img style="width: 70px; height:
24px;" alt="eqn4" src="elec_current_eqn4.jpg"><br>
<br>
<div style="text-align: left; margin-left: 40px;">where &#961; is the
resistivity of the conductor - characteristic of the
conductor.&nbsp; The conductivity of a conducting material is
defined by, &#963; = 1/&#961;.<br>
For a uniform conductor, length l, cross section A, we have E =
V/l and J = i/A, so that<br>
<br>
<div style="text-align: center;"><img style="width: 367px;
height: 54px;" alt="eqn5" src="elec_current_eqn5.jpg"><br>
<br>
<div style="text-align: left;">The resistance of the conductor
R, is defined by,<br>
<div style="text-align: center;"><img style="width: 110px;
height: 54px;" alt="eqn6" src="elec_current_eqn6.jpg"><br>
<div style="text-align: left;"><br>
Resistance is measured in ohms (&#937;), then resistivity has
units ohm.metre and conductivity (ohm.metre)<sup>-1</sup>
<br>
</div>
</div>
</div>
</div>
</div>
<div style="text-align: left;">
<div style="text-align: center;">
<div style="text-align: left;">
<div style="text-align: center;">
<div style="text-align: left;">
<ul>
<li><img style="width: 31px; height: 30px;"
alt="exclamation" src="exclamation-icon.gif"> <span
style="font-weight: bold; text-decoration:
underline;">Important:</span> The relationship V =
IR is <span style="font-weight: bold;">NOT</span>
Ohm's Law !</li>
</ul>
<div style="margin-left: 40px;"><a
href="http://www.juliantrubin.com/bigten/ohmlawexperiments.html"><span
style="font-weight: bold;"><a
href="http://www.juliantrubin.com/bigten/ohmlawexperiments.html"><img
alt="Ohm" src="Ohm.jpg" align="left"
height="122" border="0" width="95"></a>Ohm's
Law</span></a>:<br>
<div style="text-align: center;"><span
style="font-style: italic;">"If the ratio of
voltage across a conductor to the current through
it is constant for all voltages then that
conductor obeys Ohm's Law"</span><br>
<div style="text-align: left;"><br>
Ohm's law holds for metallic conductors, but not
for devices such as transistors, diodes etc.&nbsp;
The relationship V = IR can always be used to
determine the resistance at some particular I and
V for any device.<br>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div style="text-align: left; margin-left: 40px;">
<div style="text-align: center;">
<div style="text-align: left;">
<div style="text-align: center;"> </div>
</div>
</div>
</div>
</div>
<ul>
<br>
<li> Even in conductors current will only flow between two points
A and B when</li>
<br>
<ol>
<li> There is a potential difference between A and B (producing
the electric field which forces the charges to move) and,</li>
<li> A and B form part of a complete circuit.<br>
</li>
</ol>
<center><img src="elec_circuit.jpg" align="texttop" height="330"
width="300"><br>
<img alt="divider" src="divider_ornbarblu.gif" height="64"
width="393"><br>
</center>
<div align="left">
<h2><font color="#3333ff"><u>Power</u></font></h2>
</div>
</ul>
<ul>
<li> Suppose a charge dq moves from point A to point B, where the
potential difference between A and B is V<sub>AB</sub>, then the
energy released in time dt is given by</li>
</ul>
<div align="center"><img alt="elec current eqn7"
src="elec_current_eqn7.png" height="26" width="200"><br>
<br>
<blockquote>
<div align="left">so that the rate at which energy is
transferred (power), P, is given by,<br>
<div align="center"><img alt="elec current eqn8"
src="elec_current_eqn8.png" height="54" width="281"><br>
<br>
<div align="left">In terms of units we can state that&nbsp;
Amps x Volts = Watts.<br>
</div>
</div>
</div>
</blockquote>
<div align="left">
<div align="center">
<div align="left">
<ul>
<li>The form of the energy "released" depends on the
electrical component placed between A and B, for
example,</li>
</ul>
<ul>
<ul>
<li>Motor - mechanical energy (work) released&nbsp;</li>
<li>Battery - chemical energy stored in the battery</li>
<li>Resistance - thermal energy (heat) released<br>
</li>
</ul>
</ul>
</div>
</div>
</div>
</div>
<ul>
</ul>
<div align="center"><img alt="divider" src="divider_ornbarblu.gif"
height="64" width="393"><br>
<blockquote>
<div align="left">
<h2><font color="#3333ff"><u>Electro-motive Force - "emf"</u></font></h2>
</div>
</blockquote>
<div align="left">
<ul>
<li><img alt="fig2" src="elec_current_fig2.jpg" align="right"
height="300" width="370">In discussing electric circuits
you may come across the term "emf" - electro-motive
force.&nbsp; <b>It is important to realize that an "emf" is
NOT a force !</b></li>
</ul>
<ul>
<li>If a device has an "emf" it has the ability to maintain a
potential difference (voltage).&nbsp; Thus, for example, a
battery maintains an emf between its positive and negative
terminals.</li>
</ul>
<ul>
<li>The emf of a device can be defined by &#949; = dW/dq, where dW
is the work done on a positive charge dq in taking it
acrosss the potential difference of the device.&nbsp; In the
case of a simple circuit with a battery (see above) as a
charge traverses the external (to the battery) circuit it
loses energy.&nbsp; In the circuit above the energy appeara
as heat and light in the light bulb.&nbsp; When the
charge&nbsp; returns to the battery the emf of the battery
replenishes its energy.</li>
</ul>
<ul>
<li>At this introductory level we can consider the emf of a
"source" (battery, generator etc) to be exactly equivalent
to the voltage provided by the source.</li>
</ul>
<ul>
<li>The direction of the emf always represents the direction a
positive charge would move in the external circuit.&nbsp;
See circuit at right.&nbsp; The emf direction is an
important factor when we use Kirchoff's laws to analyze
circuits.</li>
<br>
<br>
</ul>
<ul>
</ul>
</div>
</div>
<br>
<div align="center"><img alt="divider" src="divider_ornbarblu.gif"
height="64" width="393"><br>
<blockquote>
<div align="left">
<h2><font color="#3333ff"><u>Internal Resistance</u></font></h2>
</div>
</blockquote>
<div align="left">
<ul>
<li>All emfs - batteries, generators etc - and electrical
measuring devices - ammeters, voltmeters etc - have an
"internal resistance".</li>
</ul>
<ul>
<li><img alt="fig4" src="elec_current_fig4.jpg" align="right"
height="158" width="152">As far as circuit analysis is
concerned these internal resistances can simply be
considered as resistors in series with the "ideal"
emf/meter.</li>
</ul>
<ul>
<li>For ammeters (current measuring devices) the goal is to
have as low an internal resistance as possible so that the
current is not affected.</li>
</ul>
<p align="center"><img alt="fig3" src="elec_current_fig3.jpg"
align="middle" height="96" width="134"></p>
<ul>
<li>For a voltmeter the internal resistance should be as large
as possible.<br>
</li>
</ul>
</div>
<br>
<div align="left"><br>
</div>
</div>
<img src="netbar.gif" height="40" width="100%">
<center>
<p style="color: rgb(255, 0, 0); font-style: italic;"
class="MsoNormal">Q: Does light have mass?<br>
A: Of course not. It's not even Catholic!!!</p>
<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92"> </p>
</center>
<p><br>
</p>
</body>
</html>

BIN
elec_current_eqn1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.7 KiB

BIN
elec_current_eqn2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.8 KiB

BIN
elec_current_eqn3.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.6 KiB

BIN
elec_current_eqn4.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

BIN
elec_current_eqn5.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.6 KiB

BIN
elec_current_eqn6.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.0 KiB

BIN
elec_current_eqn7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.0 KiB

BIN
elec_current_eqn8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.1 KiB

BIN
elec_current_eqn9.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.5 KiB

BIN
elec_current_fig2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.0 KiB

BIN
elec_current_fig3.jpg.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.9 KiB

BIN
elec_current_fig4.jpg.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.5 KiB

BIN
elec_dielec_eqn1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.6 KiB

BIN
elec_dielec_eqn2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.7 KiB

BIN
elec_dielec_fig1.jpg.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

BIN
elec_dielec_fig2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

152
elec_dielectrics.html Normal file
View File

@ -0,0 +1,152 @@
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricty - Dielectric Materials - Physics 299</title>
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
255);" link="#0000ee" alink="#ff0000" bgcolor="#ff0000"
text="#000000" vlink="#551a8b">
<center><img src="ULPhys1.gif" height="50" align="texttop"
width="189"></center>
<center>
<h1>Dielectric Materials<br>
</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</i></font>
<div class="quotation"> <font color="#ff0000"><i>"Basic research
is like shooting an arrow into the air and, where it lands,
painting a target."</i></font><br>
</div>
<div class="quotename"> </div>
Homer Burton Adkins<br>
</center>
<img src="netbar.gif" height="40" align="middle" width="100%"> <br>
<ul>
<li>In all our discussions to date we have implicitly assumed that
our charges have been located in a vacuum or on the surface of
conductors.&nbsp; We now need to consider how to take into
account the presence of non-conducting material in the real
world.&nbsp; Dielectric material is simply another way of saying
non-conducting material.</li>
</ul>
<ul>
<li><img alt="elec dielec fig2" src="elec_dielec_fig2.jpg"
height="211" align="right" width="436">Imagine a parallel
plate capacitor in which a dielectric material is placed between
the plates (at right below).&nbsp; The dielectric is composed of
atoms/molecules which contain positive and negative
charges.&nbsp; The applied electric field between the plates, E<sub>0</sub>,
will cause the positive and negative charges of the constituent
atoms/molecules to move slightly in opposite directions
(right).&nbsp; Electric dipole moments will be "induced" in the
material, as shown.&nbsp; The net effect will be for charge to
appear on the surface of the dielectric material as shown.&nbsp;
The dielectric is said to have been polarized, leading to a
polarization electric field, E<sub>P</sub>. <br>
</li>
</ul>
<blockquote>
<div align="left"><img alt="exclamation"
src="exclamation-icon.gif" height="30" width="31">&nbsp; In
conductors (metals) there are (almost) free electrons which will
move through the material when an electric field is applied,
generating an electric current.<br>
</div>
</blockquote>
<ul>
</ul>
<ul>
<li><img alt="elec dielec fig1" src="elec_dielec_fig1.jpg"
height="311" align="right" width="495">The net <b>E</b> field
between the plates has been reduced, <br>
</li>
</ul>
<div align="center"><img alt="elec dielec eqn1"
src="elec_dielec_eqn1.png" height="30" width="386"><br>
<br>
<blockquote>
<div align="left">where &#954; is called the dielectric constant or
relative permittivity of the medium.<br>
<br>
Note that for a vacuum, since E<sub>P</sub> = 0,&nbsp; &#954; = 1
and since&nbsp; E<sub>P</sub> &lt; E<sub>0</sub> for all other
materials &#954; &gt; 1.<br>
</div>
</blockquote>
<div align="left">
<ul>
<li>It is easy to show that for the parallel plate capacitor
the voltage (p.d) between the plates and the energy stored
are reduced by a factor &#954;, whereas the capacitance is
increased by a factor of &#954;.</li>
</ul>
<ul>
<li>By application of Gauss's Law to a parallel plate
capacitor with a dielectric between the plates it can be
shown that to account for the presence of the dielectric
Gauss's Law becomes,</li>
</ul>
<div align="center"><img alt="elec dielec eqn2"
src="elec_dielec_eqn2.png" height="60" width="139"><br>
<blockquote>
<div align="left">As a general rule when dielectric media is
present wherever &#949;<sub>0</sub> appears it must be replaced
by &#949;<sub>0</sub>&#954;.</div>
</blockquote>
</div>
</div>
<blockquote> </blockquote>
</div>
<img src="netbar.gif" height="40" width="100%"> <br>
<center>
<p class="MsoNormal"><span style="color: rgb(255, 0, 0);
font-style: italic;">
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</span></p>
<p><font color="#ff0000"><i>A chemist, a biologist and an
electrical engineer were on death row waiting to go in the
electric chair.</i></font></p>
<font color="#ff0000"><i> </i></font>
<p><font color="#ff0000"><i>The chemist was brought forward first.
"Do you have anything you want to say?" asked the
executioner, strapping him in. "No," replied the chemist.
The executioner flicked the switch and nothing happened.
Under this particular State's law, if an execution attempt
fails, the prisoner is to be released, so the chemist was
released.</i></font></p>
<font color="#ff0000"><i> </i></font>
<p><font color="#ff0000"><i>Then the biologist was brought
forward. "Do you have anything you want to say?" "No, just
get on with it." The executioner flicked the switch, and
again nothing happened, so the biologist was released.</i></font></p>
<font color="#ff0000"><i> </i></font>
<p><font color="#ff0000"><i> Then the electrical engineer was
brought forward. "Do you have anything you want to say?"
asked the executioner. "Yes," replied the engineer. "If you
swap the red and the blue wires over, you might make this
thing work."</i></font></p>
<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92"> </p>
</center>
<p><br>
</p>
</body>
</html>

BIN
elec_dip_exte.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 KiB

117
elec_dipexte.html Normal file
View File

@ -0,0 +1,117 @@
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricity - Electric Dipole in an External Field - Physics
299</title>
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
255);" link="#0000ee" alink="#ff0000" vlink="#551a8b">
<center>
<h1> <img src="ULPhys1.gif" height="50" align="texttop"
width="189"></h1>
</center>
<center>
<h1>Electric Dipole in an External Electric Field <br>
</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>"</i></font><font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
When you look at yourself from a universal standpoint,
something inside always reminds or informs you that there are
bigger and better things to worry about."</i></font><br>
Albert Einstein<br>
</center>
<img src="netbar.gif" height="40" align="middle" width="100%"> <br>
<ul>
</ul>
<ul>
<li>We have already considered the electric field <i><b>created</b></i>
by an electric dipole.&nbsp; Now we consider the behavior of an
electric dipole placed in a uniform (constant) electric field.</li>
</ul>
<div align="center"><img alt="elec dip in external field"
src="elec_dip_exte.gif" height="157" width="323"><br>
<br>
<div align="left">
<ul>
<li>Note that since the force on each of the charges are equal
in magnitude but opposite in direction there is <b>no net
force on the dipole</b>.</li>
</ul>
<ul>
<li>However, since the two forces are not concurrent, there is
a non-zero torque about the center of the dipole given by,</li>
</ul>
<div align="center"><img alt="elec dip ext e eqn1"
src="elec_dipexte_eqn1.jpg" height="45" width="117"><br>
<br>
<div align="left">
<ul>
<li>Using the definition of the work done by a torque
(rotational force), it can be shown that the&nbsp;
electrical potential energy stored by a dipole in an
external field is given by,</li>
</ul>
<div align="center"><img alt="elec dip in ext e eqn2"
src="elec_dipexte_eqn2.jpg" height="41" width="117"><br>
<div align="left">
<ul>
<li><img alt="hot" src="hot.gif" height="43"
align="middle" width="79">A dipole placed in a
uniform electric field will rotate until it is
aligned "-" to "+" along the field - this is the
lowest energy configuration.</li>
</ul>
<ul>
<li><img alt="exclamation" src="exclamation-icon.gif"
height="30" width="31">&nbsp; If the external
field is not uniform, the net force will not be
zero.<br>
</li>
</ul>
</div>
</div>
</div>
</div>
</div>
</div>
<ul>
</ul>
<ul>
</ul>
<div align="center"> </div>
<div style="text-align: left;"><img src="netbar.gif" height="40"
width="100%"> </div>
<center><span style="font-size: 12pt; font-family: &quot;Times New
Roman&quot;;"><span style="color: rgb(255, 0, 0); font-style:
italic;"></span></span><span style="font-size: 12pt;
font-family: &quot;Times New Roman&quot;;"><span style="color:
rgb(255, 0, 0); font-style: italic;">
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</span></span><br>
<font color="#ff0000"><i>What is a quantum particle?
The dreams that stuff is made of!</i></font><br>
<br>
<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92"> </p>
</center>
<p><br>
</p>
</body>
</html>

BIN
elec_dipexte_eqn1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.3 KiB

BIN
elec_dipexte_eqn2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.2 KiB

116
elec_dipole.html Normal file
View File

@ -0,0 +1,116 @@
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricity - Electric Dipole - Physics 299</title>
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
255);" link="#0000ee" alink="#ff0000" vlink="#551a8b">
<center>
<h1> <img src="ULPhys1.gif" height="50" align="texttop"
width="189"></h1>
</center>
<center>
<h1>Electric Field due to a Dipole<br>
</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>"</i></font><font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
To punish me for my contempt for authority, fate made me an
authority myself"</i></font><br>
Albert Einstein<br>
</center>
<img src="netbar.gif" height="40" align="middle" width="100%"> <br>
<ul>
</ul>
<ul>
<li>An electric dipole consists of two point charges of equal
magnitude, but opposite sign, separated by a short distance.</li>
</ul>
<ul>
<li>The dipole&nbsp; is electrically neutral, but due to the
separation of its charges gives rise to an electric field in its
vicinity.</li>
</ul>
<div align="center"><img alt="electric dipole" src="elec_dipole.jpg"
height="347" width="461"><br>
<div align="left">
<ul>
<li>The electric field at the "field point" is given by&nbsp;
<b>E</b> = <b>E</b><sub>+q</sub> + <b>E</b><sub>-q</sub>.&nbsp;
Note that in adding the two electric fields the y-component
cancels leaving only an x-component given by,</li>
</ul>
<div align="center"><img alt="elec dipole eqn1"
src="elec_dipole_eqn1.jpg" height="55" width="261"><br>
<blockquote>
<div align="left">where R is the distance from the centre of
the dipole to the field point and the approximation is
valid when r and R are almost equal.&nbsp; In this case
the dimension of the dipole (a) is small compared to the
field point distance.<br>
</div>
</blockquote>
<div align="left">
<ul>
<li>p (=2aq) is called the electric dipole moment.&nbsp;
It's actually a vector pointing from the negative to the
positive charge in the dipole so that,</li>
</ul>
<div align="center"><img alt="elec dipole eqn 2"
src="elec_dipole_eqn2.jpg" height="59" width="126"><br>
<div align="left">
<ul>
<li><img alt="hot" src="hot.gif" height="43"
align="middle" width="79">Many molecules have
charge distributions which can be approximated as an
electric dipole, water being one of the most common.</li>
</ul>
<div align="center"><img alt="water molecule"
src="elec_water-molecule-and-dipole-moment.jpg"
height="214" width="603"><br>
</div>
<ul>
</ul>
</div>
</div>
</div>
</div>
<ul>
</ul>
</div>
</div>
<div style="text-align: left;"><img src="netbar.gif" height="40"
width="100%"> </div>
<center><br>
<span style="font-size: 12pt; font-family: &quot;Times New
Roman&quot;;"><span style="color: rgb(255, 0, 0); font-style:
italic;">"How many Astronomers does it take to change a light
bulb ?<br>
None, astronomers prfeer the dark"</span></span><br>
<br>
<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92"> </p>
</center>
<p><br>
</p>
</body>
</html>

BIN
elec_dipole.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 173 KiB

BIN
elec_dipole_eqn1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.7 KiB

BIN
elec_dipole_eqn2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.9 KiB

166
elec_efield.html Normal file
View File

@ -0,0 +1,166 @@
<!DOCTYPE HTML PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=ISO-8859-1">
<meta name="GENERATOR"
content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0 alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricity - Electric Field - Physics 299</title>
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);"
alink="#ff0000" link="#0000ee" vlink="#551a8b">
<center>
<h1> <img src="ULPhys1.gif" align="texttop" height="50" width="189"></h1>
</center>
<center>
<h1>Electric Field</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>"Discovery consists of seeing what everybody
has
seen and thinking what nobody has thought"</i></font><br>
Albert von Szent-Gyorgyi<br>
</center>
<img src="netbar.gif" align="middle" height="40" width="100%"> <br>
&nbsp;
<ul>
<li>When two charges exert a force on each other, through what means
is the force transmitted ?</li>
</ul>
<div style="margin-left: 40px;">The simplest assumption is "<span
style="font-style: italic; font-weight: bold;">action-at-a-distance</span>".&nbsp;
They just "<span style="font-weight: bold; font-style: italic;">know</span>"
about each other's presence.&nbsp; If one of the charges moves the
other charge is aware of this immediately.&nbsp; This sounds like
"magic" with today's scientific understanding.&nbsp; <br>
The mechanism to remove the magic was proposed by <a
href="http://www.bbc.co.uk/history/historic_figures/faraday_michael.shtml">
Michael Faraday&nbsp;</a> <a
href="http://www.rigb.org/contentControl?action=detail&amp;section=1391&amp;pg=4&amp;filter=pd"><img
alt="faraday" src="faraday.jpg"
style="border: 0px solid ; width: 80px; height: 121px;" align="middle"></a>
- the <span style="font-weight: bold;">electric field</span>.&nbsp;
Every charge creates its own electric field in the space around it
(actually the space around it means all space); other charges then
interact with this field.&nbsp; When a charge moves it creates a
disturbance in its electric field which is propagated away from the
charge at the speed of light.<br>
<br>
<img style="width: 31px; height: 30px;" alt="exclamation"
src="exclamation-icon.gif"> In developing his theory of gravitation
Newton was aware of the same "<span
style="font-style: italic; font-weight: bold;">action-at-a-distance</span>"
problem.&nbsp; To solve the problem, in a similar manner, we introduce
the concept of the gravitational field.<br>
<br>
<img style="width: 31px; height: 30px;" alt="exclamation"
src="exclamation-icon.gif"> Note that the concept of the electric
field is a convenient construct to describe electromagnetic
phenomena,
but its true existence is neither proven nor essential.</div>
<ul>
<br>
&nbsp;
<li> The electric field vector, <span style="font-weight: bold;">E</span>,&nbsp;
is defined in the following way.&nbsp; If a charge, q, feels a force <b><u>F</u></b>,
then
the
electric field, <b><u>E</u></b>, at the location of the charge
is
given by</li>
<center>
<p><br>
<b><u><img alt="" src="elec_field_eqn1.gif"
style="width: 43px; height: 44px;"></u></b><br>
</p>
</center>
<br>
<li> Units of electric field are&nbsp; Newtons/Coulomb (N/C) or (as
we shall see later) Volts/metre (V/m).</li>
<br>
&nbsp;
<li> If the electric field felt by the charge q is due to
a point
charge Q, located a distance R from q, then its magnitude is given by</li>
<br>
<center>
<p><img alt="" src="elec_field_eqn2.gif"
style="width: 55px; height: 41px;"><br>
</p>
</center>
<br>
<li> The electric field due to many point charges is given by the
vector
sum of the fields due to the individual charges</li>
<br>
<center>
<p><b><u>E</u></b>&nbsp; =&nbsp; <b><u>E</u></b><sub>1</sub>&nbsp; +
<b><u>
E</u></b><sub> 2</sub> +&nbsp; <b><u>E</u></b> <sub>3</sub> +&nbsp;
.....</p>
</center>
<br>
<p>In performing this sum the direction of each <b><u>E</u></b>&nbsp;
is
the
same as the force felt by a <b><i>positive</i></b> charge. <br>
&nbsp; </p>
<li> The electric field in a region of space can be represented by
electric field lines otherwise known as "<b><i>lines of force</i></b>".</li>
<br>
<center>
<p><img src="efield_lines1.gif" align="texttop" height="221"
width="370"> </p>
</center>
<br>
<p>The direction of the electric field line is the same as that of
the force
felt by a positive charge.&nbsp; The density of the field lines
provides a
measure of the magnitude of the field.&nbsp; FIeld lines alway begin on
positive
charges and end on negative charges; they cannot be left 'hanging' in
empty
space. <br>
</p>
</ul>
<div style="text-align: center;"><img
style="width: 745px; height: 254px;" alt="efield_lines3.jpg"
src="efield_lines3.jpg"><br>
</div>
<ul>
<p><br>
</p>
<center>
<p>The diagrams above display the electric field lines in the
vicinity of
two equal point charges.</p>
</center>
</ul>
<div style="text-align: left;"><img src="netbar.gif" height="40"
width="100%">
</div>
<center><br>
<span style="font-size: 12pt; font-family: &quot;Times New Roman&quot;;"><span
style="color: rgb(255, 0, 0); font-style: italic;">"Two things are
infinite: the universe and human
stupidity; and I'm not sure about the universe."</span><br style="">
<!--[if !supportLineBreakNewLine]-->Albert Einstein</span><br>
<br>
<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92">
</p>
</center>
<p><br>
</p>
</body>
</html>

BIN
elec_field_eqn1.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 165 B

BIN
elec_field_eqn2.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 204 B

227
elec_gauss.html Normal file
View File

@ -0,0 +1,227 @@
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricity - Gauss's Law - Physics 299</title>
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
255);" alink="#ff0000" link="#0000ee" vlink="#551a8b">
<center>
<h1> <img src="ULPhys1.gif" align="texttop" height="50"
width="189"></h1>
</center>
<center>
<h1>Gauss's Law<br>
</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>"</i></font><font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
Equations are just the boring part of mathematics. I attempt
to see things in terms of geometry."</i></font><br>
Stephen Hawking<br>
</center>
<img src="netbar.gif" align="middle" height="40" width="100%"> <br>
<ul>
<li><img alt="gauss" src="gauss.jpg" align="left" height="101"
width="83">Gauss's Law is the first of Maxwell's equations we
will consider.&nbsp; At first the whole concept of Gauss's Law
will seem to be very abstract and confusing,&nbsp;<img
alt="confused" src="confused_smiley.gif" height="22"
width="15"> &nbsp; hopefully at least some of the confusion
will pass as you become more familiar with the idea.&nbsp;&nbsp;</li>
</ul>
<p><br>
<br>
</p>
<ul>
</ul>
<ul>
<li>At the outset it is important to realize that <b>Gauss's Law
and Coulomb's Law are different statements of the same
physical concept.</b>&nbsp; Which of the two is used in any
particular situation depends on the particular application and
what you are asked to determine.</li>
</ul>
<ul>
<li>Before stating Gauss's Law we must first define the concept of
<b>FLUX</b> - in particular the flux of the electric field.</li>
</ul>
<div align="left">
<ul>
<li><img alt="Electric flux" src="elec_gauss_figure1.jpg"
align="right" height="433" width="415">At every point on a
surface we can calculate an "element" of the electric flux
given by</li>
</ul>
<div align="center"><img alt="defn of E flux"
src="elec_gauss_eqn1.jpg" height="38" width="117"><br>
<blockquote>
<div align="left">so that the total electric flux passing
through a surface, S, is given by,<br>
<br>
<div align="center"><img alt="elec gauss eqn2"
src="elec_gauss_eqn2.png" height="56" width="133"><br>
</div>
</div>
</blockquote>
<div align="left">
<div align="center">
<div align="left">
<ul>
<li>Gauss's Law then states that,</li>
</ul>
<div align="center"><img alt="red tick" src="tickred1.gif"
align="top" height="48" width="48"> &nbsp;&nbsp; <img
alt="elec gauss 3" src="elec_gauss_eqn3.jpg"
height="84" width="233">&nbsp;&nbsp;&nbsp; <img
alt="red tick" src="tickred1.gif" align="top"
height="48" width="48"><br>
<blockquote>
<div align="left">where the circle on the integral
means that the surface is <i><b>closed</b></i> and
q<sub>inside</sub> is the net charge inside this
closed surface.<br>
</div>
</blockquote>
<div align="left">
<ul>
<li><img alt="exclamation"
src="exclamation-icon.gif" height="30"
width="31"> A closed surface has a definite
inside and outside differentiated by the surface,
e.g. the surface of a sphere.</li>
<li><img alt="exclamation"
src="exclamation-icon.gif" height="30"
width="31"> The <b>dA</b> vector of a closed
surface is always directed from the inside to the
outside of the surface.</li>
<li><img alt="exclamation"
src="exclamation-icon.gif" height="30"
width="31"> The exact location of the charges
inside the closed surface is not important, all
that matters is the net charge.</li>
<li><img alt="exclamation"
src="exclamation-icon.gif" height="30"
width="31"> &#949;<sub>0</sub> is the "Permittivity
of the Vacuum" a constant whose value is 8.85 x 10<sup>-12</sup>
C<sup>2</sup>/(N.m<sup>2</sup>) where the Coulomb
constant, k = 1/(4&#960;&#949;<sub>0</sub>).&nbsp; Note that
if the charges are not located in vacuum &#949;<sub>0</sub>
must be replaced by the permittivity of the medium
in question.&nbsp; </li>
<li><img alt="exclamation"
src="exclamation-icon.gif" height="30"
width="31"> The proof of Gauss's Law is beyond
the scope of this course.&nbsp; Suffice to say the
inverse square dependence on distance of Coulomb's
Law is critical.</li>
</ul>
<ul>
<li>Before using Gauss's Law to evaluate electric
fields a brief qualitative discussion is
worthwhile.&nbsp; Consider the situation of two
point charges below.&nbsp; Application of Gauss's
Law over each of the closed surfaces:</li>
</ul>
<blockquote>
<ul>
<li><img alt="elec gauss figure 2"
src="elec_gauss_figure2.png" align="right"
height="523" width="359"> S<sub>1</sub>:&nbsp;
At every point on this surface both <b>E </b>and
<b>dA</b> are directed "outwards", such that the
scalar product <b>E·dA</b> = EdAcos&#952; is always
positive.&nbsp; Thus the integral over the
surface S<sub>1</sub> will be positive, as it
must be if Gauss's Law is to be satisfied, since
the net charge enclosed is positive.</li>
<li>S<sub>2</sub> :&nbsp; <b>E </b>is directed
"inwards", <b>dA</b> "outwards", leading to a
negative value for the flux through S<sub>2</sub>,
consistent with the fact that the net charge
enclosed is negative.</li>
<li>S<sub>3</sub>:&nbsp; Some of this surface has
E directed "inwards" the remainder has <b>E</b>
directed "outwards".&nbsp; <b>dA</b> is
"outwards" everywhere on the surface.&nbsp;
Therefore the flux integral has both positive
and negative contributions.&nbsp; Since there is
no net charge enclosed by S<sub>3</sub> by
Gauss's Law the net flux will be zero.</li>
<li>S<sub>4</sub>: Once again there are negative
and positive contributions to the flux integral,
so that we can write Gauss's Law,</li>
</ul>
<div align="center"><img alt="elec_gauss_eqn4"
src="elec_gauss_eqn4.png" height="86"
width="381"><br>
<div align="left"><br>
</div>
</div>
<ul>
</ul>
</blockquote>
<ul>
</ul>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<ul>
</ul>
<ul>
<li>&nbsp;Electric flux through a closed box <a
href="http://www.youtube.com/watch?v=5ENl4vn82bc">animation.</a></li>
</ul>
<ul>
<li>Coulomb's Law, Electric Field, Electric Flux and Gauss's Law <a
href="http://www.veoh.com/collection/APPhysics/watch/v15544578N9Hg8YBK">video</a>.<br>
</li>
</ul>
<div style="text-align: left;"><img src="netbar.gif" height="40"
width="100%"></div>
<center><span style="font-size: 12pt; font-family: &quot;Times New
Roman&quot;;"><span style="color: rgb(255, 0, 0); font-style:
italic;"></span></span><span style="font-size: 12pt;
font-family: &quot;Times New Roman&quot;;"><span style="color:
rgb(255, 0, 0); font-style: italic;">
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</span></span><br>
<font color="#ff0000"><i>Did you hear about the French post-doc
who went to work at the Fermi Lab, but never went in because
the sign over the door always said it was closed.</i></font><br>
<br>
<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92"> </p>
</center>
<p><br>
</p>
</body>
</html>

517
elec_gauss_apps.html Normal file
View File

@ -0,0 +1,517 @@
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricity - Quantitative use of Gauss's Law - Physics 299</title>
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
255);" link="#0000ee" alink="#ff0000" bgcolor="#3333ff"
text="#000000" vlink="#551a8b">
<center>
<h1> <img src="ULPhys1.gif" height="50" align="texttop"
width="189"></h1>
</center>
<center>
<h1>Quantitative Use of Gauss's Law <br>
</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>"</i></font><font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
It has been said that democracy is the worst form of
government except all the others that have been tried."</i></font><br>
Winston Churchill<br>
</center>
<img src="netbar.gif" height="40" align="middle" width="100%"> <br>
<div align="center">&nbsp;<br>
&nbsp;&nbsp; <img alt="elec gauss 3" src="elec_gauss_eqn3.jpg"
height="84" width="233">&nbsp;&nbsp;&nbsp;&nbsp;</div>
<ul>
<li>Gauss's Law is valid for any closed surface (a Gaussian
surface) and any distribution of charges.&nbsp; If the electric
field is known at every point on the surface S the integral can
in principle be evaluated and will be seen to be equal to the
sum of the enclosed charges divided by &#949;<sub>0</sub>.
&nbsp;&nbsp; However, only in certain very symmetric situations,
where we can infer a great deal of information about the
electric field, can it be used to actually calculate <b>E</b>.&nbsp;
In such cases Gauss's Law provides a short cut to determining <b>E</b>.&nbsp;
The key is to be able to "extract" the <b>E</b> from the flux
integral.</li>
</ul>
<ul>
<li>We will consider three possible geometric situations in which
we can obtain <b>E</b> from Gauss's Law:</li>
<ul>
<li>Spherical symmetry - three dimensions</li>
<li>Rectangular symmetry - two dimensions</li>
<li>Cylindrical symmetry - one dimension</li>
</ul>
</ul>
<div align="center"><img alt="divider bar"
src="divider_ornbarblu.gif" height="64" width="393"><br>
</div>
<div align="center"><big><font color="#3333ff"><u><big><b>SPHERICAL
SYMMETRY</b></big></u></font></big></div>
<ul>
</ul>
<ul>
<li><big><b>Single Point Charge</b></big></li>
</ul>
<blockquote><img alt="elec gauss figure 5"
src="elec_gauss_figure5.jpg" height="313" align="right"
width="237">Consider a single point charge +Q and a spherical
surface, S,&nbsp; of radius r and center at the location of
+Q.&nbsp; From the symmetry of this situation we can conclude
that, everywhere on the surface S, <b>E</b> has the same value
and is directed radially outwards (normal to the surface).&nbsp;
This is the same as the direction of <b>dA</b>.&nbsp; Therefore,<br>
<div align="center"><img alt="elec gauss eqn5"
src="elec_gauss_eqn5.png" height="62" width="515"><br>
<div align="left">so that,<br>
<div align="center"><img alt="elec gauss eqn6"
src="elec_gauss_eqn6.png" height="64" width="117"><br>
<div align="left">which is exactly Coulomb's Law !!<br>
<br>
As has already been stated - <font color="#ff0000"><big><b>Gauss's
Law and Coulomb's Law are different statements of
the same physical principle.<br>
<font color="#330033"><br>
<br>
</font></b></big></font></div>
</div>
</div>
</div>
</blockquote>
<div align="center">
<div align="left">
<div align="center">
<div align="left">
<ul>
<li><big><b>Spherical Charge Distribution with Uniform
Charge Density</b></big></li>
</ul>
<blockquote>Charge<b> </b>is distributed uniformly
throughout the volume of the sphere (this means that the
sphere must be a non-conductor since as we have seen the
charge on a conductor must reside on the surface) such
that the total charge Q is given by,<br>
<br>
<div align="center"><img alt="elec gauss eqn7"
src="elec_gauss_eqn7.png" height="41" width="117"><br>
<br>
<div align="left">where &#961; is the (volume) charge
density, in units of Coulombs/m<sup>3</sup>.<br>
<br>
What is the electric field at any point either outside
or inside the sphere ?<br>
Due to the symmetry of this configuration we can
conclude that <b>E</b> is directed radially outwards
everywhere and can (at most) depend only on the
(radial) distance from the center of the sphere.&nbsp;
There are two distinct regions to consider:<br>
<br>
<b><img alt="elec gauss figure 5"
src="elec_gauss_figure6.png" height="215"
align="right" width="155"><u>Outside the
sphere,&nbsp; r &gt; R</u></b><br>
<br>
Applying Gauss's Law over a Gaussian surface (sphere)
of radius r, then,<br>
<div align="center"><img alt="elec gauss eqn 5"
src="elec_gauss_eqn5.png" height="62" width="515"><br>
<br>
<div align="left">so that,<br>
<div align="center"><img alt="elec gauss eqn 6"
src="elec_gauss_eqn6.png" height="64"
width="117"><br>
<br>
<div align="left">In other words, for points
outside the sphere, the sphere behaves as a
point charge located the sphere's center.<br>
<img alt="hot" src="hot.gif" height="43"
align="middle" width="79">&nbsp; We saw
exactly the same type of behavior when
considering the gravitational effect of a
spherical mass.<br>
<br>
</div>
</div>
</div>
</div>
<b><img alt="elec gauss figure 7"
src="elec_gauss_figure7.png" height="230"
align="right" width="167"><u>Inside the sphere, r
&lt; R</u></b><br>
<br>
Applying Gauss's Law over a Gaussian surface (sphere)
of radius r, then,<br>
<br>
<div align="center"><img alt="elec gauss eqn8"
src="elec_gauss_eqn8.jpg" height="63" width="563"><br>
<div align="left">Or in terms of Q and R,<br>
<br>
<div align="center"><img alt="elec gauss eqn9"
src="elec_gauss_eqn9.jpg" height="64"
width="123"><br>
<br>
<div align="left">Note that for r &lt; R only
the charge inside a sphere of radius r
contributes to <b>E</b>.&nbsp; The charge
between r and R has no effect.<br>
<br>
<img alt="exclamation"
src="exclamation-icon.gif" height="30"
width="31"> It is important to realize that
without using Gauss's Law, these results could
be obtained via Coulomb's Law, but would
involve considerably more work - setting
up&nbsp; a non-trivial multiple integral to
consider every point charge in the sphere....<br>
<br>
<div align="center"><img alt="divider bar"
src="divider_ornbarblu.gif" height="64"
width="393"><br>
<big><font color="#3333ff"><u><big><b>CYLINDRICAL
SYMMETRY<br>
<br>
</b></big></u></font></big></div>
</div>
</div>
</div>
</div>
</div>
</div>
</blockquote>
<div align="center">
<div align="left">
<div align="center">
<div align="left">
<div align="center">
<div align="left">
<div align="center">
<div align="left">
<ul>
<li><big><b>Infinite </b><b>Line Charge</b></big>
<big><b>with Linear Charge Density &#955;</b></big></li>
</ul>
<blockquote><img alt="elec gauss figure8"
src="elec_gauss_figure8.png"
height="212" align="right" width="331">Determine
the <b>E</b> field a distance r from the
line charge.&nbsp; (Note that the units of
&#955; are Coulombs/meter)<br>
<br>
Symmetry tells us that <b>E</b> can only
have a component perpendicular to the line
charge, that is perpendicular to the
cylindrical surface shown.<br>
<br>
Applying Gauss's Law over the cylindrical
Gaussian surface, radius r and length l,
as shown, there will in principle be three
contributions - one from the curved
surface and one from each of the two
ends.&nbsp; However, on the ends <b>E</b>
and <b>dA</b> are perpendicular, so that
<b>E·dA</b> = 0, therefore there is no
contribution to the flux through S.&nbsp;
On the curved surface <b>E</b> and <b>dA</b>
are parallel, thus,<br>
<br>
<div align="center"><img alt="elec gauss
eqn10" src="elec_gauss_eqn10,jpg.jpg"
height="51" width="577"><br>
<div align="left">so that,<br>
<div align="center"><img alt="elec
gauss eqn11"
src="elec_gauss_eqn11.jpg"
height="75" width="117"><br>
<div align="left"><br>
We can extend this analysis to the
case of a uniformly charged
infinite cylinder in a similar
manner to the extension of the
point charge to the spherical
charge distribution above.<br>
<br>
<div align="center"><img
alt="divider bar"
src="divider_ornbarblu.gif"
height="64" width="393"><br>
<big><font color="#3333ff"><u><big><b>RECTANGULAR
SYMMETRY</b></big></u></font></big><br>
</div>
</div>
</div>
</div>
</div>
</blockquote>
<div align="center">
<div align="left">
<div align="center">
<div align="left">
<div align="center">
<div align="left">
<ul>
<li><big><b>Infinite plane of
charge</b></big></li>
</ul>
<blockquote><img alt="elec gauss
figure 9"
src="elec_gauss_figure9.jpg"
height="200" align="right"
width="246">Determine the <b>E</b>
field at any distance above or
below an infinite plane with
charge density &#963; (Coulombs/m<sup>2</sup>).<br>
<br>
Symmetry dictates the <b>E</b>
must be perpendicular to the
surface everywhere.<br>
<br>
Applying Gauss's Law over the
cylindrical surface shown,
then the curved surface of the
cylinder&nbsp; contributes
nothing to the flux since <b>E</b>
and <b>dA</b> are
perpendicular.&nbsp; But on
the ends <b>E</b> and <b>dA</b>
are parallel.&nbsp; Therefore,<br>
<br>
<div align="center"><img
alt="elec gauss eqn12"
src="elec_gauss_eqn12.jpg"
height="56" width="536"><br>
<br>
<div align="left">so that,<br>
<div align="center"><img
alt="elec gauss eqn13"
src="elec_gauss_eqn13.jpg" height="96" width="117"><br>
<br>
</div>
</div>
</div>
</blockquote>
<blockquote>That is the electric
field is constant - it does
not depend on how far the
field point is from the plane
!!&nbsp; <br>
<br>
<img alt="exclamation"
src="exclamation-icon.gif"
height="30" width="31"> Note
that this is only true for an
infinite plane of
charge.&nbsp; If the distance
of the field point from the
plane is small compared to the
"size" of the plane, the above
expression is a good
approximation.<br>
<br>
<div align="center"><img
alt="divider"
src="divider_ornbarblu.gif"
height="64" width="393"><br>
</div>
</blockquote>
<div align="center">
<div align="left">
<ul>
<li>In all the above
situations the key to
using Gauss's Law is <b>SYMMETRY</b>.&nbsp;
There must be enough
symmetry in the problem
to know the direction of
<b>E</b> everywhere in
the vicinity of the
charge
distribution.&nbsp;
Knowing the direction of
<b>E</b> the trick is
then to choose a
Gaussian surface over
which to apply Gauss's
Law such that <b>E</b>
can be "taken out" of
the flux integral.&nbsp;
So when using Gauss's
Law to determine <b>E</b>
there are three key
steps:</li>
</ul>
<ul>
<ol>
<li>
<h3>State what you are
assuming about <b>E</b>
based on the
symmetry of the
problem.</h3>
</li>
<li>
<h3>State clearly the
Gaussian surface(s)
you will use - often
most easily done by
sketching the
surface(s) on a
diagram.</h3>
</li>
<li>
<h3>Evaluate the
surface (flux)
integral to
determine E.&nbsp;
The symmetry of E
and choice of
Gaussian surface
should allow "E" to
be "taken out" of
the integral and
thus be determined.<br>
</h3>
</li>
</ol>
</ul>
</div>
</div>
<blockquote> </blockquote>
<blockquote> </blockquote>
</div>
</div>
</div>
</div>
</div>
</div>
<blockquote>
<div align="center">
<div align="left">
<div align="center"> </div>
</div>
</div>
</blockquote>
<ul>
</ul>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<blockquote>
<div align="center">
<div align="left"> </div>
</div>
</blockquote>
</div>
</div>
</div>
</div>
<ul>
<font color="#ff0000"><big> </big></font>
</ul>
<font color="#ff0000"><big><b> </b></big></font><img
src="netbar.gif" height="40" width="100%"><br>
<br>
<center><span style="font-size: 12pt; font-family: &quot;Times New
Roman&quot;;"><span style="color: rgb(255, 0, 0); font-style:
italic;"></span></span><font color="#ff0000"><i>An engineer
friend of mine told me of a group of scientists that were
nominated for a Nobel prize. Using dental tools, they were
able to sort out the smallest particles that mankind has yet
discovered. The group became known as " the Graders of the
Flossed Quark."</i><i><span style="font-size: 12pt;
font-family: &quot;Times New Roman&quot;;"></span></i><i><span
style="font-size: 12pt; font-family: &quot;Times New
Roman&quot;;">
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</span></i><i> </i></font><br>
<br>
<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92"> </p>
</center>
<p><br>
</p>
</body>
</html>

157
elec_gauss_cond.html Normal file
View File

@ -0,0 +1,157 @@
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricity - Gauss's Law and Conductors - Physics 299</title>
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
255);" link="#0000ee" alink="#ff0000" vlink="#551a8b">
<center>
<h1> <img src="ULPhys1.gif" height="50" align="texttop"
width="189"></h1>
</center>
<center>
<h1>Gauss's Law and Conductors<br>
</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>"</i></font><font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
We shouldn't be surprised that conditions in the universe are
suitable for life, but this is not evidence that the universe
was designed to allow for life."</i></font><br>
Stephen Hawking<br>
</center>
<img src="netbar.gif" height="40" align="middle" width="100%"> <br>
<ul>
<li>In electrostatic conditions - no electric current flow -
Gauss's Law applied to conductors (typically metallic objects)
leads to some important conclusions.</li>
</ul>
<blockquote><img alt="exclamation" src="exclamation-icon.gif"
height="30" width="31"> Note that since a conductor contains
"free" charges if an electric field exists anywhere in the
conductor a current will flow.&nbsp; Thus, in electrostatic
conditions ("static" means all charges are at rest) there can be
no electric field anywhere in the conductor.<br>
</blockquote>
<ul>
<li><b><img alt="elec gauss figure 4" src="elec_gauss_figure3.jpg"
height="166" align="right" width="193">Insulated solid
conductor having a net charge</b></li>
</ul>
<blockquote>Under electrostatic conditions, <b>E</b> = 0 throughout
the object.&nbsp; Applying Gauss's Law to the closed surface A, we
conclude that there can be no charge inside A.&nbsp; But the
conductor has a net charge.&nbsp; The only possibility is that the
charge resides outside the surface A.&nbsp; If we gradually
increase the size of A, so that eventually it lies just below the
surface of the conductor, the charge must still reside outside
A.&nbsp; Therefore, as a consequence of Gauss's Law, any <b>charge
placed in a conductor must reside on its surface.</b><br>
<br>
</blockquote>
<ul>
<li><b>Insulated hollow charged conductor (conducting shell)</b></li>
</ul>
<blockquote>
<p>We now hollow out the conductor, changing nothing else.&nbsp;
Thus, there is no charge inside the hollowed out conductor, so
that <b>E</b> = 0 inside.&nbsp; This fact leads to the
necessity for an antenna to pick up radio signals inside a
car.&nbsp; Radio waves are comprised of electric and magnetic
fields (electromagnetic waves - much more later), which must be
received by the radio.&nbsp; But the car is approximately a
hollow metallic conductor, which means <b>E</b> = 0
inside.&nbsp; Without an antenna the radio waves cannot be
received by the radio.&nbsp; The antenna provides a "shielded
channel" to direct the radio signal into the car.<br>
<br>
</p>
<center><img alt="elec gauss figure 4"
src="elec_gauss_figure4.jpg" height="226" width="700"><br>
</center>
</blockquote>
<center>
<div align="left">
<ul>
<li><b>Faraday Cage</b></li>
</ul>
<blockquote>
<p>A <a
href="http://www.princeton.edu/%7Eachaney/tmve/wiki100k/docs/Faraday_cage.html">Faraday
cage</a> is a metal container, which is used to shield
sensitive electronics from stray electric fields.&nbsp;
Fields outside the container cannot penetrate due to the
above explanation.<br>
<br>
</p>
</blockquote>
<ul>
<li><b>Proof of inverse square nature of Coulomb's Law</b></li>
</ul>
<blockquote>
<p>It can be shown mathematically that if Coulomb's Law is not
exactly of the inverse square form - 1/r<sup>2</sup> then
the electric field inside a closed conductor would not be
exactly zero.&nbsp; All experiments to date have failed to
measure such an electric field, with an accuracy such that
we know that the inverse component of r in Coulomb's Law is
2 with an accuracy of 16 decimal places.<br>
</p>
</blockquote>
</div>
</center>
<br>
<img src="netbar.gif" height="40" width="100%"><br>
<center><span style="font-size: 12pt; font-family: &quot;Times New
Roman&quot;;"><span style="color: rgb(255, 0, 0); font-style:
italic;"></span></span><span style="font-size: 12pt;
font-family: &quot;Times New Roman&quot;;"><span style="color:
rgb(255, 0, 0); font-style: italic;">
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</span></span><br>
<font color="#ff0000"><i>A Simpleton's Guide to Science (stolen
from UK magazine)
<br>
Relativity : Family get-togethers at Christmas
<br>
Gravity : Strength of a glass of beer
<br>
Time travel : Throwing the alarm clock at the wall
<br>
Black holes : What you get in black socks
<br>
Critical mass: A gaggle of film reviewers
<br>
Hyperspace : Where you park at the superstore</i></font><br>
<br>
<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92"> </p>
</center>
<p><br>
</p>
</body>
</html>

BIN
elec_gauss_eqn1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.4 KiB

BIN
elec_gauss_eqn10,jpg.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Some files were not shown because too many files have changed in this diff Show More