davisnotes/elec_chargemotion.html

102 lines
3.9 KiB
HTML

<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Electricity - Charged Particle Motion in an Electric Field -
Physics 299</title>
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
255);" link="#0000ee" alink="#ff0000" vlink="#551a8b">
<center>
<h1> <img src="ULPhys1.gif" height="50" align="texttop"
width="189"></h1>
</center>
<center>
<h1>Charged Particle Motion in an Electric Field <br>
</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>"</i></font><font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
The hardest thing in the world to understand is the income tax"</i></font><br>
Albert Einstein<br>
</center>
<img src="netbar.gif" height="40" align="middle" width="100%"> <br>
<ul>
</ul>
<ul>
<li>Having determined the electric field we now want to determine
the behaviour of a point charge, q<sub>0</sub>, placed in this
field.</li>
</ul>
<ul>
<li>The force on the charge is given by&nbsp; <b>F</b> = q<sub>0</sub><b>E</b>.&nbsp;
But Newton's second law tells us that <b>F</b> = m<b>a</b>, so
that the acceleration of the particle can be written, <b>a</b>
= (q<sub>0</sub>/m)<b>E</b>.</li>
</ul>
<ul>
<li>Once we have an expression for the acceleration it is usually
possible to determine the trajectory of the particle, although
in the general case this will involve solving differential
equations.&nbsp; However, when <b>E</b> is constant the
acceleration is constant which allows us to use the kinematic
equations describing motion under constant acceleration from the
beginning of the first semester of this course (Physics
298).&nbsp; Important equations in Physics should never be
forgotten <img alt="sadface" src="sadface.jpg" height="24"
width="24">.&nbsp; <br>
</li>
</ul>
<ul>
<li>In two dimensions, with <b>E</b> constant in one direction
and zero in the other, charged particle motion can be treated in
the same way as projectile motion of a particle under the
influence of a (constant) gravitational field.</li>
</ul>
<div align="center"><img alt="charged particle motion"
src="elec_charged_particle_motion.jpg" height="172" width="292"><br>
</div>
<ul>
</ul>
<ul>
</ul>
<div align="center"> </div>
<div style="text-align: left;"><img src="netbar.gif" height="40"
width="100%"> </div>
<center><span style="font-size: 12pt; font-family: &quot;Times New
Roman&quot;;"><span style="color: rgb(255, 0, 0); font-style:
italic;"></span></span><span style="font-size: 12pt;
font-family: &quot;Times New Roman&quot;;"><span style="color:
rgb(255, 0, 0); font-style: italic;">
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</span></span><br>
<i><font color="#ff0000">What do you get if you have Avogadro's
number of donkeys?
Answer: molasses (a mole of asses)</font></i><br>
<br>
<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92"> </p>
</center>
<p><br>
</p>
</body>
</html>