212 lines
8.8 KiB
HTML
212 lines
8.8 KiB
HTML
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
|
|
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html;
|
|
charset=windows-1252">
|
|
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
|
|
alpha) [Netscape]">
|
|
<meta name="Author" content="C. L. Davis">
|
|
<title>Electricity - Kirchoff's Laws - Physics 299</title>
|
|
<meta content="C. L. Davis" name="author">
|
|
</head>
|
|
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
|
|
255);" link="#0000ee" alink="#ff0000" vlink="#551a8b">
|
|
<center>
|
|
<h1> <img src="ULPhys1.gif" height="50" align="texttop"
|
|
width="189"></h1>
|
|
</center>
|
|
<center>
|
|
<h1>Kirchhoff's Laws<br>
|
|
</h1>
|
|
</center>
|
|
<center><img src="celticbar.gif" height="22" width="576"><br>
|
|
<br>
|
|
<font color="#ff0000"><i>
|
|
<meta http-equiv="content-type" content="text/html;
|
|
charset=windows-1252">
|
|
</i></font><font color="#ff0000"><i>
|
|
<meta http-equiv="content-type" content="text/html;
|
|
charset=windows-1252">
|
|
</i></font>
|
|
<div class="copy-paste-block"><font color="#ff0000"><i><span
|
|
class="bqQuoteLink">"An expert is a man who has made all
|
|
the mistakes which can be made, in a narrow field.</span></i><span></span>
|
|
</font>"<br>
|
|
</div>
|
|
<font color="#ff0000"><i> </i><font color="#000000">Niels Bohr</font></font><br>
|
|
</center>
|
|
<img src="netbar.gif" height="40" align="middle" width="100%"> <br>
|
|
<ul>
|
|
<li>
|
|
<div align="left">The most common general method to analyze
|
|
electrical circuits is by use of Kirchhoff's Laws.<img
|
|
alt="kirchoff" src="kirchhoff.jpg" height="133"
|
|
align="middle" width="84"></div>
|
|
</li>
|
|
</ul>
|
|
<blockquote>
|
|
<h3><u><img alt="staricon" src="StarIconGreen.png" height="48"
|
|
align="middle" width="50"> Junction Theorem</u></h3>
|
|
</blockquote>
|
|
<blockquote>
|
|
<div align="center"><b><big><font color="#3333ff"><i>At any
|
|
junction in a circuit the current entering the junction
|
|
must equal the current leaving the junction.</i><i><br>
|
|
</i></font></big></b></div>
|
|
<br>
|
|
<div align="center">(This is nothing more than a statement of
|
|
conservation of charge)<br>
|
|
</div>
|
|
</blockquote>
|
|
<blockquote>
|
|
<h3><u><img alt="staricon" src="StarIconGreen.png" height="52"
|
|
align="middle" width="53"> Loop Theorem</u></h3>
|
|
<p align="center"><font color="#3333ff"><b><big><i>The sum of the
|
|
changes in potential when traversing any complete</i><i>
|
|
loop is zero.</i></big></b></font><br>
|
|
</p>
|
|
<p align="center">(This is equivalent to conservation of energy)<br>
|
|
</p>
|
|
</blockquote>
|
|
<ul>
|
|
</ul>
|
|
<div align="center"><img alt="divider" src="divider_ornbarblu.gif"
|
|
height="64" width="393"></div>
|
|
<ul>
|
|
<li>
|
|
<h3><u>Conventions</u></h3>
|
|
</li>
|
|
</ul>
|
|
<blockquote>As usual, in order to ensure consistent results from
|
|
application of these laws, we must adhere to several conventions
|
|
concerning the currents and potentials in circuits.<br>
|
|
<u><b><br>
|
|
Potentials</b></u>:<br>
|
|
<ol>
|
|
<li>When a resistive device is traversed in the direction of
|
|
current flow the change in potential is -iR. Conversely,
|
|
if the resistance is traversed opposite to the direction of
|
|
the current the potential change is +iR.</li>
|
|
<li>When an emf is traversed in the direction of the emf the
|
|
change in potential is +ε. Conversely, if the emf is
|
|
traversed opposite to the emf direction the change in
|
|
potential is -ε.</li>
|
|
</ol>
|
|
<p><br>
|
|
<u><b>Currents:</b></u><br>
|
|
</p>
|
|
<blockquote>
|
|
<p>In setting up a problem, the current direction in any
|
|
particular circuit element is assigned arbitrarily.
|
|
Kitchoff's laws are then applied to the circuit using these
|
|
current directions. After solving the resulting
|
|
equations if a current is negative that means the "actual"
|
|
current direction is opposite the arbitrarily chosen
|
|
direction.<br>
|
|
</p>
|
|
</blockquote>
|
|
<ol>
|
|
</ol>
|
|
<div align="center"><img alt="divider" src="divider_ornbarblu.gif"
|
|
height="64" width="393"><br>
|
|
</div>
|
|
</blockquote>
|
|
<ul>
|
|
<li>
|
|
<h3><u>Application of Kirchhoff's Laws</u></h3>
|
|
</li>
|
|
</ul>
|
|
<blockquote>
|
|
<p>Kirchhoff's laws can be applied to <b>any circuit</b> to
|
|
obtain a set of equations relating the currents, resistances and
|
|
emfs in the circuit. These equations can then be solved
|
|
for the unknown quantities in the circuit. For any circuit
|
|
follow the steps below.<br>
|
|
</p>
|
|
</blockquote>
|
|
<blockquote>
|
|
<ol>
|
|
<li>Label the current flowing in each part of the circuit,
|
|
bearing in mind that current will "split" on reaching a
|
|
junction. The direction of the defined direction of the
|
|
current does not matter - see current convention above.</li>
|
|
<li>At each junction in the circuit use the junction theorem to
|
|
write down the equations relating the currents entering and
|
|
leaving. </li>
|
|
<li>Define all possible loops in the circuit and label.</li>
|
|
<li>For each loop choose a starting location then use the loop
|
|
theorem to write down the equation relating changes in
|
|
potential which must be zero after traversing the complete
|
|
loop.</li>
|
|
<li>Solve the set of equations from 2. and 4. to obtain the
|
|
unknown parameters of the circuit.</li>
|
|
</ol>
|
|
<p><br>
|
|
As an example, consider the circuit below. With the 3 emfs
|
|
we cannot use the series/parallel analysis.<br>
|
|
</p>
|
|
<div align="center"><img alt="fig1" src="elec_kirch_fig1.gif"
|
|
height="185" width="435"></div>
|
|
</blockquote>
|
|
<blockquote><u>Junctions:</u><br>
|
|
<blockquote>a: I<sub>1</sub> = I<sub>2</sub> + I<sub>3</sub>
|
|
<br>
|
|
b: I<sub>3</sub> + I<sub>2</sub> = I<sub>3</sub> <br>
|
|
<br>
|
|
</blockquote>
|
|
<u>Loops:</u><br>
|
|
<blockquote>1 (including ε<sub>1</sub> starting at a traversing
|
|
clockwise): - I<sub>3</sub>R<sub>4</sub> - ε<sub>3</sub> -
|
|
I<sub>1</sub>R<sub>2</sub> + ε<sub>1</sub> - I<sub>1</sub>R<sub>1</sub>
|
|
= 0<br>
|
|
2 (including ε<sub>2</sub> starting at a traversing clockwise):
|
|
- I<sub>2</sub>R<sub>3</sub> - ε<sub>2</sub> + ε<sub>3</sub>
|
|
+ I<sub>3</sub>R<sub>4</sub> = 0<br>
|
|
3 (including ε1 and ε<sub>2</sub> starting at a traversing
|
|
clockwise): - I<sub>2</sub>R<sub>3</sub> - ε<sub>2</sub> -
|
|
I<sub>1</sub>R<sub>2</sub> + ε<sub>1</sub> - I<sub>1</sub>R<sub>1</sub>
|
|
= 0<br>
|
|
</blockquote>
|
|
Looking at these equations it is clear that the two junction
|
|
equations are equivalent, and that loop equation 3 is simply the
|
|
sum of loop equations 1 and 2. Therefore there are only 3
|
|
independent equations (a, 1 and 2), which we can solve for, say,
|
|
the currents I<sub>1</sub>, I<sub>2</sub> and I<sub>3</sub>.<br>
|
|
<br>
|
|
<img alt="exlamation" src="exclamation-icon.gif" height="30"
|
|
width="31"> Note that in more complicated circuits there will be
|
|
many more junctions and a large number of possible loops.
|
|
You only need apply the loop theorem to as many loops to obtain
|
|
the number of independent equations necessary to determine the
|
|
unknown parameters. That is if you have 3 unknown
|
|
quantities, you'll need a total of 3 independent equations.<br>
|
|
</blockquote>
|
|
<ul>
|
|
</ul>
|
|
<div align="left"> </div>
|
|
<img src="netbar.gif" height="40" width="100%">
|
|
<center>
|
|
<p style="color: rgb(255, 0, 0); font-style: italic;"
|
|
class="MsoNormal">
|
|
<meta http-equiv="content-type" content="text/html;
|
|
charset=windows-1252">
|
|
</p>
|
|
<font color="#ff0000"><i>What do you get if you have Avogadro's
|
|
number of donkeys?<br>
|
|
Answer: molasses (a mole of asses)</i></font><br>
|
|
<br>
|
|
<img src="celticbar.gif" height="22" width="576"> <br>
|
|
|
|
<p><i>Dr. C. L. Davis</i> <br>
|
|
<i>Physics Department</i> <br>
|
|
<i>University of Louisville</i> <br>
|
|
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
|
|
<br>
|
|
</p>
|
|
<p><img src="header-index.gif" height="51" width="92"> </p>
|
|
</center>
|
|
<p><br>
|
|
</p>
|
|
</body>
|
|
</html>
|