235 lines
9.7 KiB
HTML
235 lines
9.7 KiB
HTML
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
|
|
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html;
|
|
charset=windows-1252">
|
|
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
|
|
alpha) [Netscape]">
|
|
<meta name="Author" content="C. L. Davis">
|
|
<title>Light and Optics - Multiple Slit Diffraction/Interference -
|
|
Diffraction Gratings - Physics 299</title>
|
|
</head>
|
|
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
|
|
255);" link="#0000ee" alink="#ff0000" vlink="#551a8b">
|
|
<center>
|
|
<h1><img src="ULPhys1.gif" height="50" align="texttop" width="189">
|
|
</h1>
|
|
</center>
|
|
<center>
|
|
<h1>Multiple Slit Diffraction/Interference - Diffraction Gratings<br>
|
|
</h1>
|
|
</center>
|
|
<center><img src="celticbar.gif" height="22" width="576"> <br>
|
|
<br>
|
|
<font color="#ff0000"><i>"<span class="bqQuoteLink"></span></i></font><font
|
|
color="#ff0000"><i> </i></font><font color="#ff0000"><i>
|
|
<meta http-equiv="content-type" content="text/html;
|
|
charset=windows-1252">
|
|
</i></font><font color="#ff0000"><i>
|
|
<meta http-equiv="content-type" content="text/html;
|
|
charset=windows-1252">
|
|
Physics is actually too hard for physicists"</i></font><br>
|
|
<font color="#ff0000"><i><span class="bqQuoteLink">
|
|
<meta http-equiv="content-type" content="text/html;
|
|
charset=windows-1252">
|
|
</span></i></font> <font color="#ff0000"><i>
|
|
<meta http-equiv="content-type" content="text/html;
|
|
charset=windows-1252">
|
|
</i></font>
|
|
<meta http-equiv="content-type" content="text/html;
|
|
charset=windows-1252">
|
|
David Hilbert (Mathematician)<br>
|
|
</center>
|
|
<img src="netbar.gif" height="40" align="middle" width="100%">
|
|
<blockquote>
|
|
<div align="center">
|
|
<div align="left">
|
|
<div align="center">
|
|
<div align="left">
|
|
<div align="center">
|
|
<div align="left"> </div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</blockquote>
|
|
<div align="center"> </div>
|
|
<ul>
|
|
<li> <big><b>IMPORTANT</b></big>: Don't be confused, diffraction
|
|
and interference are different aspects of the same phenomenon -
|
|
<b><i>the <a
|
|
href="http://www.physicsclassroom.com/class/waves/Lesson-3/Interference-of-Waves">superposition
|
|
of waves.</a></i></b></li>
|
|
</ul>
|
|
<blockquote>
|
|
<p><i><b>Interference:</b></i><b> Superposition of waves
|
|
from a finite number of "point" sources.<br>
|
|
</b></p>
|
|
<p><b><i>D</i><i>iffraction</i>: </b><b>Superposition
|
|
of waves from an infinite number of "point" sources,
|
|
comprising a single large source.<br>
|
|
</b></p>
|
|
</blockquote>
|
|
<img alt="fig1" src="lo_msdiffraction_fig1.jpg" height="296"
|
|
align="right" width="450">
|
|
<ul>
|
|
<li>Having discussed double slit interference/diffraction, the
|
|
natural extension is to 3, 4, 5... multiple slits.</li>
|
|
</ul>
|
|
<blockquote>
|
|
<p>The diagram at right illustrates a 5 slit configuration, where
|
|
the path difference at point P between waves from each of the
|
|
slits is dsinθ with a slit separation of "d". Clearly, if
|
|
the waves from all five slits are in phase, maximum intensity
|
|
will be observed at P when<br>
|
|
</p>
|
|
</blockquote>
|
|
<p align="center"> <img alt="eqn1" src="lo_interference_eqn1.jpg"
|
|
height="30" width="120"><br>
|
|
</p>
|
|
<blockquote>
|
|
<div align="left">where n = 0, 1, 2,...<br>
|
|
<br>
|
|
</div>
|
|
</blockquote>
|
|
<div align="left">
|
|
<ul>
|
|
<li>A detailed mathematical analysis yields an intensity pattern
|
|
for N slits each of width d given by</li>
|
|
</ul>
|
|
<div align="center"> <img alt="eqn1"
|
|
src="lo_msdiffraction_eqn1.jpg" height="63" width="189"><br>
|
|
<blockquote>
|
|
<div align="left">where β is the same β as in the single slit
|
|
diffraction and </div>
|
|
</blockquote>
|
|
</div>
|
|
</div>
|
|
<div align="center"><img alt="eqn2" src="lo_msdiffraction_eqn2.jpg"
|
|
height="69" width="133"><br>
|
|
<blockquote>
|
|
<div align="left">Note that this pattern is comprised of a
|
|
diffraction envelope together with the (sin<sup>2</sup>Nγ)/sin<sup>2</sup>γ
|
|
term. This latter term leads to the existence of <i><b>principal
|
|
maxima</b></i> predicted by dsinθ = nλ together with much
|
|
weaker <i><b>secondary maxima</b></i> between the principal
|
|
maxima as shown below for a five slit example.<br>
|
|
<div align="center"><img alt="fig2"
|
|
src="lo_msdiffraction_fig2.jpg" height="334" width="498"><br>
|
|
<br>
|
|
<img alt="divider" src="divider_ornbarblu.gif" height="64"
|
|
width="100%"><br>
|
|
<h3><u><b>DIFFRACTION GRATINGS</b></u></h3>
|
|
</div>
|
|
</div>
|
|
</blockquote>
|
|
<div align="left">
|
|
<div align="center">
|
|
<div align="left">
|
|
<ul>
|
|
<li>The <a
|
|
href="http://physics-animations.com/Physics/English/DG10/DG.htm">diffraction
|
|
grating</a> is an important experimental application
|
|
of the multiple slit maximum/minimum phenomenon.
|
|
In its simplest form a diffraction grating consistes of
|
|
a metal or glass plate with many very finely spaced
|
|
grooves or slits.</li>
|
|
</ul>
|
|
<ul>
|
|
<li>For a metal grating interference occurs in the
|
|
reflected light. For a glass grating reflected or
|
|
transmitted light will interfere.</li>
|
|
</ul>
|
|
<ul>
|
|
<li>The "slit" spacing, d, is typically defined by
|
|
the number of grooves per cm (or inch).</li>
|
|
</ul>
|
|
<ul>
|
|
<li>Principal maxima are located at angles θ given by sinθ
|
|
= nλ/d. Therefore, the smaller "d" (or the more
|
|
grooves per cm) the larger the angle θ.</li>
|
|
</ul>
|
|
<ul>
|
|
<li>By examining the exact intensity formula it can be
|
|
shown that the smaller "d" the brighter the principal
|
|
maxima are compared to the secondary maxima.</li>
|
|
</ul>
|
|
<ul>
|
|
<li>When an atom is "excited" the spectrum of light it
|
|
emits de-exciting back to its ground state is
|
|
characteristic of that particular atom.
|
|
Thus, observing the spectrum of light emitted by a star
|
|
gives an accurate measure of the elemental compostion of
|
|
the star. Since the angle θ depends on the
|
|
wavelength λ we can use a diffraction grating to obtain
|
|
the spectrum of the light emitted by the star.</li>
|
|
</ul>
|
|
<ul>
|
|
<li>For a "white" light source a diffraction grating may
|
|
lead to several "orders", corresponding to n = 1, 2,
|
|
3,... Each order will contain the complete spectrum of
|
|
colors (see below).<br>
|
|
</li>
|
|
</ul>
|
|
<div align="center"><img alt="fig3"
|
|
src="lo_msdiffraction_fig3.jpg" height="398" width="674"><br>
|
|
<blockquote>
|
|
<div align="left"><img alt="exclamation"
|
|
src="exclamation-icon.gif" height="30" width="31">
|
|
Depending on the value of "d" the various "orders" may
|
|
overlap. In other words red light (long
|
|
wavelength) in the first order (n=1) could have the
|
|
same value of θ as blue light (smaller wavelength) in
|
|
the second order (n=2).<br>
|
|
<br>
|
|
<img alt="exclamation" src="exclamation-icon.gif"
|
|
height="30" width="31"> Note that in a diffraction
|
|
grating red light is diffracted through a larger angle
|
|
than blue light, in contrast to the way in which a
|
|
prism separates the rainbow of colors (below).<br>
|
|
<div align="center"><img alt="fig4"
|
|
src="lo_msdiffraction_fig4.jpg" height="360"
|
|
width="480"><br>
|
|
</div>
|
|
</div>
|
|
</blockquote>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<blockquote> </blockquote>
|
|
</div>
|
|
<blockquote> </blockquote>
|
|
<ul>
|
|
</ul>
|
|
<div align="center">
|
|
<div align="left">
|
|
<div align="center"> </div>
|
|
</div>
|
|
<img src="netbar.gif" height="40" width="100%"><br>
|
|
</div>
|
|
<br>
|
|
<center><i><font color="#ff0000"> </font></i><i><font
|
|
color="#ff0000">
|
|
<meta http-equiv="content-type" content="text/html;
|
|
charset=windows-1252">
|
|
A little boy refused to run anymore. When his mother asked him
|
|
why, he replied, "I heard that the faster you go, the shorter
|
|
you become</font></i><br>
|
|
<br>
|
|
<img src="celticbar.gif" height="22" width="576"> <br>
|
|
|
|
<p><i>Dr. C. L. Davis</i><br>
|
|
<i>Physics Department</i><br>
|
|
<i>University of Louisville</i><br>
|
|
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
|
|
<br>
|
|
</p>
|
|
<p><img src="header-index.gif" height="51" width="92"> </p>
|
|
</center>
|
|
<p><br>
|
|
</p>
|
|
</body>
|
|
</html>
|