davisnotes/mag_dipole.html

172 lines
7.3 KiB
HTML

<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
alpha) [Netscape]">
<meta name="Author" content="C. L. Davis">
<title>Magnetism - Dipoles - Physics 299</title>
<meta content="C. L. Davis" name="author">
</head>
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
255);" alink="#ff0000" link="#0000ee" vlink="#551a8b">
<center>
<h1> <img src="ULPhys1.gif" align="texttop" height="50"
width="189"></h1>
</center>
<center>
<h1>Magnetic Dipoles <br>
</h1>
</center>
<center><img src="celticbar.gif" height="22" width="576"><br>
<br>
<font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</i></font><font color="#ff0000"><i>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</i></font>
<div class="copy-paste-block"><font color="#ff0000"><i><span
class="bqQuoteLink">"A</span></i></font><font
color="#ff0000"><i><span class="bqQuoteLink"> fact is a simple
statement that everyone believes.&nbsp; It is innocent,
unless found guilty.&nbsp; A hypothesis is a novel
suggestion that no one wants to believe.&nbsp; It is
guilty, until found effective</span></i><span></span>"</font><br>
</div>
<font color="#ff0000"><i> </i><font color="#000000">Edward Teller</font></font><br>
</center>
<img src="netbar.gif" align="middle" height="40" width="100%">
<blockquote> </blockquote>
<ul>
<li>Shown below is a rectangular current loop sides a and b placed
in a region of space with uniform magnetic field (<b>B</b>).<br>
</li>
</ul>
<div align="center"><img alt="magdipfig1" src="mag_dipole_fig1.jpg"
height="368" width="328">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;&nbsp;&nbsp; <img
alt="magdipfig2" src="mag_dipole_fig2.jpg" height="346"
width="309"><br>
<br>
<div align="left">
<ul>
<li>Application of the expression for the force on a current
carrying wire to the top and bottom sides of the rectangle
leads to cancellation of forces as shown.</li>
</ul>
<ul>
<li>The forces on the other two sides (length a) are also
equal and opposite, as shown in (b) above, <img
alt="magdipeqn3" src="mag_dipole_eqn3.jpg" align="middle"
height="42" width="117">.&nbsp; Although the net <i><b>force</b></i>
in this case is zero, because the forces are not co-linear,
there is a net <i><b>torque</b></i> on the current loop,
given by</li>
</ul>
<div align="center"><img alt="magdipeqn1"
src="mag_dipole_eqn1.jpg" height="37" width="279"><br>
<blockquote>
<div align="left">The magnitude of this torque is given by<br>
<div align="center"><img alt="magdipeqn2"
src="mag_dipole_eqn2.jpg" height="49" width="423"><br>
<br>
<div align="left">where A = ab is the cross section area
of the coil.<br>
</div>
</div>
</div>
</blockquote>
<div align="left">
<div align="center">
<div align="left">
<ul>
<li>The magnitude of the magnetic dipole moment of the
loop with N turns is defined by,</li>
</ul>
<div align="center"><img alt="magdipeqn4"
src="mag_dipole_eqn4.jpg" height="42" width="99"><br>
<blockquote>
<div align="left"><img alt="magdipfig3"
src="mag_dipole_fig3.jpg" align="right"
height="149" width="234">&#956; is a vector quantity
whose direction is perpendicular to the loop with
a sense defined by (another) <b>Right Hand Rule</b>.<br>
</div>
</blockquote>
<div align="left">
<ul>
<li>With this definition of &#956; the torque on the
current loop is given by</li>
</ul>
<div align="center">&nbsp;<img alt="magdipeqn5"
src="mag_dipole_eqn5.jpg" height="33" width="99"><br>
<div align="left">
<ul>
<li>Without proof, the potential energy of a
magnetic dipole in an external magnetic
field is given by</li>
</ul>
<div align="center"><img alt="magdipeqn6"
src="mag_dipole_eqn6.jpg" height="33"
width="117"><br>
<br>
<div align="left"><img alt="hot" src="hot.gif"
height="43" width="79"> Note that the
above expressions for the torque and
potential energy of a magnetic dipole in an
external magnetic field are identical in
form to those obtained for an electric
dipole in an external electric field.<br>
<br>
<div align="center"><img alt="elecdipext"
src="elec_dipexte_eqn1.jpg" height="45"
width="117">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
and&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <img
alt="elecdipextf2"
src="elec_dipexte_eqn2.jpg" height="41"
width="117"><br>
</div>
</div>
</div>
</div>
</div>
</div>
<blockquote>
<div align="left"> </div>
</blockquote>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<img src="netbar.gif" height="40" width="100%">
<center>
<p style="color: rgb(255, 0, 0); font-style: italic;"
class="MsoNormal">
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</p>
<font color="#ff0000"><i>I stayed up all night to see where the
sun went.&nbsp; Then it dawned on me.</i></font><br>
<br>
&nbsp;<img src="celticbar.gif" height="22" width="576"> <br>
&nbsp;
<p><i>Dr. C. L. Davis</i> <br>
<i>Physics Department</i> <br>
<i>University of Louisville</i> <br>
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
<br>
&nbsp; </p>
<p><img src="header-index.gif" height="51" width="92"> </p>
</center>
<p><br>
</p>
</body>
</html>