441 lines
21 KiB
HTML
441 lines
21 KiB
HTML
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
|
|
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html;
|
|
charset=windows-1252">
|
|
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
|
|
alpha) [Netscape]">
|
|
<meta name="Author" content="C. L. Davis">
|
|
<title>Magnetism - Faraday's Law of Induction - Physics 299</title>
|
|
<meta content="C. L. Davis" name="author">
|
|
</head>
|
|
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
|
|
255);" link="#0000ee" vlink="#551a8b" alink="#ff0000">
|
|
<center>
|
|
<h1> <img src="ULPhys1.gif" height="50" width="189"
|
|
align="texttop"></h1>
|
|
</center>
|
|
<center>
|
|
<h1>Faraday's Law of Induction<br>
|
|
</h1>
|
|
</center>
|
|
<center><img src="celticbar.gif" height="22" width="576"><br>
|
|
<br>
|
|
<font color="#ff0000"><i>
|
|
<meta http-equiv="content-type" content="text/html;
|
|
charset=windows-1252">
|
|
</i></font><font color="#ff0000"><i>
|
|
<meta http-equiv="content-type" content="text/html;
|
|
charset=windows-1252">
|
|
</i></font>
|
|
<div class="copy-paste-block"><font color="#ff0000"><i><span
|
|
class="bqQuoteLink">"A</span></i></font><font
|
|
color="#ff0000"><i><span class="bqQuoteLink"> fact is a simple
|
|
statement that everyone believes. It is innocent,
|
|
unless found guilty. A hypothesis is a novel
|
|
suggestion that no one wants to believe. It is
|
|
guilty, until found effective</span></i><span></span>"</font><br>
|
|
</div>
|
|
<font color="#ff0000"><i> </i><font color="#000000">Edward Teller</font></font><br>
|
|
</center>
|
|
<img src="netbar.gif" height="40" width="100%" align="middle">
|
|
<blockquote> </blockquote>
|
|
<ul>
|
|
<li>So far we have treated electricity and magnetism as almost
|
|
separate subjects. We now begin to discuss phenomena which
|
|
show that electricity and magnetism are inextricably connected,
|
|
hence the term <i><b>electromagnetism</b></i>. The first
|
|
of these properties is known as <i><b>Faraday's Law of
|
|
Induction</b></i>.</li>
|
|
</ul>
|
|
<blockquote><img alt="exclamation" src="exclamation-icon.gif"
|
|
height="30" width="31"> Formally, time <i>independent</i>
|
|
electrical and magnetic properties can be described by considering
|
|
electricity and magnetism as largely separate phenomena.
|
|
However, when time dependence becomes part of the "equation"
|
|
we find that electrical and magnetic properties become
|
|
inextricably linked - electromagnetism.<br>
|
|
</blockquote>
|
|
<ul>
|
|
</ul>
|
|
<ul>
|
|
<li>This law is conveniently written in terms of magnetic flux,
|
|
which is defined in the same way as electric flux.</li>
|
|
</ul>
|
|
<div align="center"><img alt="magfaradayeqn1"
|
|
src="mag_faraday_eqn1.jpg" height="47" width="144"><br>
|
|
<blockquote>
|
|
<div align="left">where S is the surface over which the flux is
|
|
evaluated.<br>
|
|
<br>
|
|
For constant <b>B,</b> perpendicular to the surface, Φ<sub>B</sub>
|
|
= BA where A is the surface area of S.<br>
|
|
<br>
|
|
<img alt="exclamation" src="exclamation-icon.gif" height="30"
|
|
width="31"> The magnetic flux, Φ<sub>B</sub>, is so
|
|
important it has its own unit the Weber - 1 Weber
|
|
= 1 T.m<sup>2</sup> . In the early days of
|
|
electromagnetism it was common to measure the magnetic (<b>B</b>)
|
|
field in Weber/m<sup>2</sup> .<br>
|
|
</div>
|
|
</blockquote>
|
|
<div align="left">
|
|
<ul>
|
|
<li>In term of the magnetic flux Faraday's Law of Induction is
|
|
given by,</li>
|
|
</ul>
|
|
<div align="center"><img alt="magfaradayeqn2"
|
|
src="mag_faraday_eqn2.jpg" height="66" width="108"><br>
|
|
<blockquote>
|
|
<div align="left">The induced electromotive force (<i>emf</i>)
|
|
in a circuit is equal to the rate of change of magnetic
|
|
flux through the circuit.<br>
|
|
<br>
|
|
<img alt="exclamation" src="exclamation-icon.gif"
|
|
height="30" width="31"> An <i>emf</i> is not a force,
|
|
rather it can be considered as the voltage <i>induced</i>
|
|
in a closed circuit.<br>
|
|
<br>
|
|
<img alt="exclamation" src="exclamation-icon.gif"
|
|
height="30" width="31"> Faraday experimentally
|
|
determined his law in the form presented above.<br>
|
|
<br>
|
|
<hr size="2" width="100%"><br>
|
|
</div>
|
|
</blockquote>
|
|
<div align="left">
|
|
<ul>
|
|
<li>One of the easiest ways to change the magnetic flux
|
|
through a circuit is to move a permanent (bar) magnet
|
|
towards or away from the circuit as shown in the
|
|
diagrams below.</li>
|
|
</ul>
|
|
<div align="center"><img alt="magfaradayfig1"
|
|
src="mag_faraday_fig1.jpg" height="401" width="698"><br>
|
|
<blockquote>
|
|
<div align="left">(a) <img alt="magfaradayfig2"
|
|
src="mag_faraday_fig2.jpg" height="191" width="267"
|
|
align="right">Magnetic flux passes through the
|
|
circuit, but does not change with time, so there is no
|
|
induced <i>emf</i> and so no induced current.<br>
|
|
<br>
|
|
(b) The flux through the circuit increases with
|
|
time causing an induced <i>emf</i> and current.<br>
|
|
<br>
|
|
(c) As the magnet moves faster the rate of
|
|
change of flux with time is increased causing a larger
|
|
<i>emf</i> and current.<br>
|
|
<br>
|
|
(d) When the magnet moves away from the circuit
|
|
the flux decreases with time so the induced <i>emf</i>
|
|
and current are reversed.<br>
|
|
<br>
|
|
<hr size="2" width="100%"><br>
|
|
<br>
|
|
</div>
|
|
</blockquote>
|
|
<div align="left">
|
|
<ul>
|
|
<li>The origin of the changing magnetic flux (field)
|
|
is not limited to permanent magnets. The
|
|
magnetic field due to a second circuit can produce a
|
|
similar effect, as described in the examples
|
|
below. <br>
|
|
</li>
|
|
</ul>
|
|
<div align="center">
|
|
<blockquote>
|
|
<div align="left"><img alt="magfaradayfig3"
|
|
src="mag_faraday_fig3.jpg" height="95"
|
|
width="267" align="right">In the diagram at
|
|
right the current in the left circuit is constant,
|
|
but the flux through the other circuit increases
|
|
as the two circuits get closer.<br>
|
|
<br>
|
|
<br>
|
|
<br>
|
|
<br>
|
|
<img alt="magfaradayfig4"
|
|
src="mag_faraday_fig4.jpg" height="90"
|
|
width="264" align="left">In the situation at
|
|
left both circuits are stationary. The
|
|
current in the left circuit is initially zero, but
|
|
rapidly increases to a constant value when the
|
|
switch is closed. As the current reaches its
|
|
final (constant) value the flux through the right
|
|
circuit is increasing with time, thus by Faraday's
|
|
Law, causing a brief pulse of induced
|
|
current in the second circuit. When the
|
|
switch is opened the flux in the right circuit
|
|
rapidly decreases causing a short induced current
|
|
pulse in the opposite direction.<br>
|
|
<br>
|
|
<hr size="2" width="100%"></div>
|
|
</blockquote>
|
|
<div align="left">
|
|
<ul>
|
|
<li><img alt="exclamation"
|
|
src="exclamation-icon.gif" height="30"
|
|
width="31"> Important ! In both the
|
|
above examples a magnetic field (<b>B</b>)
|
|
changing with time results in a changing
|
|
magnetic flux. But it is possible to have
|
|
a changing flux with a constant <b>B</b> if the
|
|
cross sectional area - <b>dA</b> - can be made
|
|
to change with time as in the case of the
|
|
(electric) generator.<br>
|
|
</li>
|
|
</ul>
|
|
<div align="center"><img alt="magfaradayfig5"
|
|
src="mag_faraday_fig5.jpg" height="295"
|
|
width="348"></div>
|
|
<ul>
|
|
</ul>
|
|
<div align="center"><img alt="divider"
|
|
src="divider_ornbarblu.gif" height="64"
|
|
width="393"><br>
|
|
<div align="center">
|
|
<blockquote>
|
|
<div>
|
|
<h3><font color="#cc33cc"><u><b>LENZ'S LAW</b></u></font></h3>
|
|
</div>
|
|
</blockquote>
|
|
<div>
|
|
<div align="left">
|
|
<ul>
|
|
<li>Mathematically the negative sign in
|
|
Faraday's Law tells us about the
|
|
direction of the induced (<i>emf</i>)
|
|
current. Practically we use Lenz's
|
|
Law to determine the direction in
|
|
specific cases. <br>
|
|
</li>
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
<blockquote>
|
|
<div><img alt="confused"
|
|
src="confused_smiley.gif" height="22"
|
|
width="15"> <big><i><b>"The induced
|
|
current will appear in such a
|
|
direction that it opposes the change
|
|
that produced it"</b></i></big>
|
|
<img alt="confused"
|
|
src="confused_smiley.gif" height="22"
|
|
width="15"><br>
|
|
<br>
|
|
<b>Confusing ? Yes !</b><br>
|
|
<br>
|
|
</div>
|
|
</blockquote>
|
|
<div>
|
|
<div align="left">
|
|
<div align="center">
|
|
|
|
|
|
|
|
<img alt="magfaradayfig7"
|
|
src="mag_faraday_fig7.jpg" height="526"
|
|
width="684"><br>
|
|
</div>
|
|
<ul>
|
|
</ul>
|
|
<ul>
|
|
<li><img alt="exclamation"
|
|
src="exclamation-icon.gif" height="30"
|
|
width="31"> The induced (flux)
|
|
magnetic field (associated with the
|
|
induced current) does not necessarily
|
|
oppose the field which causes the change
|
|
in flux, rather it opposes the <b>CHANGE</b>
|
|
in this field.<br>
|
|
</li>
|
|
</ul>
|
|
<ul>
|
|
<li><img alt="exclamation"
|
|
src="exclamation-icon.gif" height="30"
|
|
width="31"> Lenz's Law always ensures
|
|
that there is a force resisting the
|
|
motion of the magnet. It is the
|
|
work done against this force which
|
|
appears as the energy of the moving
|
|
charges of the induced current. <br>
|
|
</li>
|
|
</ul>
|
|
<p align="center"><img alt="magfaradayfig6"
|
|
src="mag_faraday_fig6.jpg" height="260"
|
|
width="275"></p>
|
|
<ul>
|
|
</ul>
|
|
<div align="center"><img alt="divider"
|
|
src="divider_ornbarblu.gif" height="64"
|
|
width="393"><br>
|
|
<br>
|
|
<font color="#cc33cc"><big><u><b>FARADAY'S
|
|
LAW</b></u><u><b> = MAXWELL
|
|
EQUATION</b></u></big></font><br>
|
|
<div align="left">
|
|
<ul>
|
|
<li>Whenever there is an induced
|
|
electric current there must also be
|
|
an induced electric field, <b>E</b>.
|
|
|
|
|
|
|
|
|
|
|
|
The work dW done by this induced
|
|
field moving a charge q<sub>0</sub>
|
|
a distance <b>ds</b> around a loop
|
|
is given by,</li>
|
|
</ul>
|
|
<div align="center"><img
|
|
alt="magfaradayeqn3"
|
|
src="mag_faraday_eqn3.jpg"
|
|
height="36" width="288"><br>
|
|
<blockquote>
|
|
<div align="left">where dε is the
|
|
potential difference in <b>ds</b>.<br>
|
|
<br>
|
|
Therefore, <br>
|
|
<div align="center"><img
|
|
alt="magfaradayeqn4"
|
|
src="mag_faraday_eqn4.jpg"
|
|
height="31" width="117"><br>
|
|
<div align="left">So that the <i>emf
|
|
|
|
|
|
|
|
|
|
</i>around the whole loop is<br>
|
|
<div align="center"><img
|
|
alt="magfaradayeqn5"
|
|
src="mag_faraday_eqn5.jpg"
|
|
height="46" width="189"><br>
|
|
<br>
|
|
<div align="left">Equating
|
|
this <i>emf</i> to that
|
|
given by Faraday's Law we
|
|
obtain the integral form
|
|
of Faraday's Law, the
|
|
third of Maxwell's
|
|
equations we have
|
|
encountered so far,<br>
|
|
<div align="center"><img
|
|
alt="magfaradayeqn6"
|
|
src="mag_faraday_eqn6.jpg"
|
|
height="58"
|
|
width="297"><br>
|
|
<br>
|
|
<div align="left"><img
|
|
alt="exclamation"
|
|
src="exclamation-icon.gif"
|
|
height="30"
|
|
width="31">
|
|
Note that the line
|
|
integral of <b>E</b>
|
|
must be round a closed
|
|
loop (circuit).<br>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</blockquote>
|
|
<div align="left">
|
|
<div align="center">
|
|
<div align="left">
|
|
<div align="center">
|
|
<div align="left">
|
|
<div align="center">
|
|
<div align="left">
|
|
<ul>
|
|
<li>Written in the
|
|
above form the
|
|
relationship between
|
|
the <b>E</b> and <b>B</b>
|
|
fields is clear</li>
|
|
</ul>
|
|
<p align="center"><big><i><big><b>"A
|
|
|
|
|
|
|
|
|
|
magnetic field
|
|
changing with
|
|
time induces
|
|
an electric
|
|
field"</b></big></i></big><br>
|
|
</p>
|
|
<blockquote>
|
|
<div align="left">Shortly
|
|
|
|
|
|
|
|
|
|
we will see that the
|
|
reverse of this
|
|
statement is also
|
|
true.<br>
|
|
</div>
|
|
</blockquote>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<blockquote>
|
|
<div align="left"> </div>
|
|
</blockquote>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<blockquote>
|
|
<div align="left"> </div>
|
|
</blockquote>
|
|
</div>
|
|
</div>
|
|
<blockquote> </blockquote>
|
|
</div>
|
|
<div align="center"><img src="netbar.gif" height="40" width="100%"></div>
|
|
<div align="center">
|
|
<div align="center"> </div>
|
|
<center>
|
|
<p style="color: rgb(255, 0, 0); font-style: italic;"
|
|
class="MsoNormal">
|
|
<meta http-equiv="content-type" content="text/html;
|
|
charset=windows-1252">
|
|
</p>
|
|
<font color="#ff0000"><i>They told me I had type A blood, but it
|
|
was a Type O.</i></font><br>
|
|
<br>
|
|
<img src="celticbar.gif" height="22" width="576"> <br>
|
|
|
|
<p><i>Dr. C. L. Davis</i> <br>
|
|
<i>Physics Department</i> <br>
|
|
<i>University of Louisville</i> <br>
|
|
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
|
|
<br>
|
|
</p>
|
|
<p><img src="header-index.gif" height="51" width="92"> </p>
|
|
</center>
|
|
<p><br>
|
|
</p>
|
|
<blockquote> </blockquote>
|
|
</div>
|
|
</body>
|
|
</html>
|