use pydantic
This commit is contained in:
@@ -1,17 +1,16 @@
|
||||
# Cavepedia Web
|
||||
|
||||
Next.js frontend with integrated LangGraph agent for Cavepedia.
|
||||
Next.js frontend with integrated PydanticAI agent for Cavepedia.
|
||||
|
||||
## Project Structure
|
||||
|
||||
```
|
||||
web/
|
||||
├── src/ # Next.js application
|
||||
├── agent/ # LangGraph agent (Python)
|
||||
│ ├── main.py # Agent graph definition
|
||||
│ ├── langgraph.json
|
||||
│ ├── pyproject.toml
|
||||
│ └── Dockerfile # Production container
|
||||
├── agent/ # PydanticAI agent (Python)
|
||||
│ ├── main.py # Agent definition
|
||||
│ ├── server.py # FastAPI server with AG-UI
|
||||
│ └── pyproject.toml
|
||||
└── ...
|
||||
```
|
||||
|
||||
@@ -20,7 +19,7 @@ web/
|
||||
- Node.js 24+
|
||||
- Python 3.13
|
||||
- npm
|
||||
- Google AI API Key (for the LangGraph agent)
|
||||
- Google AI API Key (for the PydanticAI agent)
|
||||
|
||||
## Development
|
||||
|
||||
@@ -46,77 +45,37 @@ cp agent/.env.example agent/.env
|
||||
npm run dev
|
||||
```
|
||||
|
||||
This starts both the Next.js UI and LangGraph agent servers concurrently.
|
||||
This starts both the Next.js UI and PydanticAI agent servers concurrently.
|
||||
|
||||
## Agent Deployment
|
||||
|
||||
The agent is containerized for production deployment.
|
||||
The agent can be containerized for production deployment.
|
||||
|
||||
### Building the Docker image
|
||||
### Environment Variables
|
||||
|
||||
```bash
|
||||
cd agent
|
||||
docker build -t cavepediav2-agent .
|
||||
```
|
||||
| Variable | Required | Description |
|
||||
|----------|----------|-------------|
|
||||
| `GOOGLE_API_KEY` | Yes | Google AI API key for Gemini |
|
||||
|
||||
### Running in production
|
||||
|
||||
The agent requires PostgreSQL and Valkey for persistence and pub/sub:
|
||||
|
||||
```bash
|
||||
docker run \
|
||||
-p 8123:8000 \
|
||||
-e REDIS_URI="redis://valkey:6379" \
|
||||
-e DATABASE_URI="postgres://user:pass@postgres:5432/langgraph" \
|
||||
-e GOOGLE_API_KEY="your-key" \
|
||||
-e LANGSMITH_API_KEY="your-key" \
|
||||
cavepediav2-agent
|
||||
cd agent
|
||||
uv run uvicorn server:app --host 0.0.0.0 --port 8000
|
||||
```
|
||||
|
||||
Or use Docker Compose with the required services:
|
||||
|
||||
```yaml
|
||||
services:
|
||||
valkey:
|
||||
image: valkey/valkey:9
|
||||
|
||||
postgres:
|
||||
image: postgres:16
|
||||
environment:
|
||||
POSTGRES_DB: langgraph
|
||||
POSTGRES_USER: langgraph
|
||||
POSTGRES_PASSWORD: langgraph
|
||||
|
||||
agent:
|
||||
image: git.seaturtle.pw/cavepedia/cavepediav2-agent:latest
|
||||
ports:
|
||||
- "8123:8000"
|
||||
environment:
|
||||
REDIS_URI: redis://valkey:6379
|
||||
DATABASE_URI: postgres://langgraph:langgraph@postgres:5432/langgraph
|
||||
GOOGLE_API_KEY: ${GOOGLE_API_KEY}
|
||||
depends_on:
|
||||
- valkey
|
||||
- postgres
|
||||
```
|
||||
|
||||
### CI/CD
|
||||
|
||||
The agent image is automatically built and pushed to `git.seaturtle.pw/cavepedia/cavepediav2-agent:latest` on push to `main` via Gitea Actions.
|
||||
|
||||
## Web Deployment
|
||||
|
||||
### Environment Variables
|
||||
|
||||
| Variable | Required | Default | Description |
|
||||
|----------|----------|---------|-------------|
|
||||
| `LANGGRAPH_DEPLOYMENT_URL` | Yes | `http://localhost:8000` | URL to the LangGraph agent |
|
||||
| `LANGGRAPH_DEPLOYMENT_URL` | Yes | `http://localhost:8000` | URL to the agent |
|
||||
| `AUTH0_SECRET` | Yes | - | Session encryption key (`openssl rand -hex 32`) |
|
||||
| `AUTH0_DOMAIN` | Yes | - | Auth0 tenant domain |
|
||||
| `AUTH0_CLIENT_ID` | Yes | - | Auth0 application client ID |
|
||||
| `AUTH0_CLIENT_SECRET` | Yes | - | Auth0 application client secret |
|
||||
| `APP_BASE_URL` | Yes | - | Public URL of the app |
|
||||
| `LANGSMITH_API_KEY` | No | - | LangSmith API key for tracing |
|
||||
|
||||
### Docker Compose (Full Stack)
|
||||
|
||||
@@ -139,29 +98,14 @@ services:
|
||||
agent:
|
||||
image: git.seaturtle.pw/cavepedia/cavepediav2-agent:latest
|
||||
environment:
|
||||
REDIS_URI: redis://valkey:6379
|
||||
DATABASE_URI: postgres://langgraph:langgraph@postgres:5432/langgraph
|
||||
GOOGLE_API_KEY: ${GOOGLE_API_KEY}
|
||||
depends_on:
|
||||
- valkey
|
||||
- postgres
|
||||
|
||||
valkey:
|
||||
image: valkey/valkey:9
|
||||
|
||||
postgres:
|
||||
image: postgres:16
|
||||
environment:
|
||||
POSTGRES_DB: langgraph
|
||||
POSTGRES_USER: langgraph
|
||||
POSTGRES_PASSWORD: langgraph
|
||||
```
|
||||
|
||||
## Available Scripts
|
||||
|
||||
- `dev` - Start both UI and agent servers
|
||||
- `dev:ui` - Start only Next.js
|
||||
- `dev:agent` - Start only LangGraph agent
|
||||
- `dev:agent` - Start only PydanticAI agent
|
||||
- `build` - Build Next.js for production
|
||||
- `start` - Start production server
|
||||
- `lint` - Run ESLint
|
||||
@@ -169,7 +113,7 @@ services:
|
||||
|
||||
## References
|
||||
|
||||
- [LangGraph Documentation](https://langchain-ai.github.io/langgraph/)
|
||||
- [PydanticAI Documentation](https://ai.pydantic.dev/)
|
||||
- [CopilotKit Documentation](https://docs.copilotkit.ai)
|
||||
- [Next.js Documentation](https://nextjs.org/docs)
|
||||
- [Auth0 Next.js SDK Examples](https://github.com/auth0/nextjs-auth0/blob/main/EXAMPLES.md)
|
||||
|
||||
@@ -1,8 +0,0 @@
|
||||
{
|
||||
"python_version": "3.13",
|
||||
"image_distro": "wolfi",
|
||||
"dependencies": ["."],
|
||||
"graphs": {
|
||||
"vpi_1000": "./main.py:graph"
|
||||
}
|
||||
}
|
||||
@@ -1,186 +1,26 @@
|
||||
"""
|
||||
This is the main entry point for the agent.
|
||||
It defines the workflow graph, state, tools, nodes and edges.
|
||||
PydanticAI agent with MCP tools from Cavepedia server.
|
||||
"""
|
||||
|
||||
from typing import Any, List, Callable, Awaitable
|
||||
import json
|
||||
|
||||
from langchain.tools import tool
|
||||
from langchain_core.messages import BaseMessage, SystemMessage
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langchain_google_genai import ChatGoogleGenerativeAI
|
||||
from langgraph.graph import END, MessagesState, StateGraph, START
|
||||
from langgraph.prebuilt import ToolNode, tools_condition
|
||||
from langgraph.types import Command
|
||||
from langchain_mcp_adapters.client import MultiServerMCPClient
|
||||
from langchain_mcp_adapters.interceptors import MCPToolCallRequest, MCPToolCallResult
|
||||
from pydantic_ai import Agent
|
||||
from pydantic_ai.models.google import GoogleModel
|
||||
from pydantic_ai.mcp import MCPServerStreamableHTTP
|
||||
|
||||
|
||||
class AgentState(MessagesState):
|
||||
"""
|
||||
Here we define the state of the agent
|
||||
# Create MCP server connection to Cavepedia
|
||||
mcp_server = MCPServerStreamableHTTP(
|
||||
url="https://mcp.caving.dev/mcp",
|
||||
timeout=30.0,
|
||||
)
|
||||
|
||||
In this instance, we're inheriting from MessagesState, which will bring in
|
||||
the messages field for conversation history.
|
||||
"""
|
||||
|
||||
tools: List[Any]
|
||||
|
||||
|
||||
# @tool
|
||||
# def your_tool_here(your_arg: str):
|
||||
# """Your tool description here."""
|
||||
# print(f"Your tool logic here")
|
||||
# return "Your tool response here."
|
||||
|
||||
backend_tools = [
|
||||
# your_tool_here
|
||||
]
|
||||
|
||||
class RolesHeaderInterceptor:
|
||||
"""Interceptor that injects user roles header into MCP tool calls."""
|
||||
|
||||
def __init__(self, user_roles: list = None):
|
||||
self.user_roles = user_roles or []
|
||||
|
||||
async def __call__(
|
||||
self,
|
||||
request: MCPToolCallRequest,
|
||||
handler: Callable[[MCPToolCallRequest], Awaitable[MCPToolCallResult]]
|
||||
) -> MCPToolCallResult:
|
||||
headers = dict(request.headers or {})
|
||||
if self.user_roles:
|
||||
headers["X-User-Roles"] = json.dumps(self.user_roles)
|
||||
|
||||
modified_request = request.override(headers=headers)
|
||||
return await handler(modified_request)
|
||||
|
||||
def get_mcp_client(user_roles: list = None):
|
||||
"""Create MCP client with user roles header."""
|
||||
return MultiServerMCPClient(
|
||||
{
|
||||
"cavepedia": {
|
||||
"transport": "streamable_http",
|
||||
"url": "https://mcp.caving.dev/mcp",
|
||||
"timeout": 10.0,
|
||||
}
|
||||
},
|
||||
tool_interceptors=[RolesHeaderInterceptor(user_roles)]
|
||||
)
|
||||
|
||||
# Cache for MCP tools per access token
|
||||
_mcp_tools_cache = {}
|
||||
|
||||
async def get_mcp_tools(user_roles: list = None):
|
||||
"""Lazy load MCP tools with user roles."""
|
||||
roles_key = ",".join(sorted(user_roles)) if user_roles else "default"
|
||||
|
||||
if roles_key not in _mcp_tools_cache:
|
||||
try:
|
||||
mcp_client = get_mcp_client(user_roles)
|
||||
tools = await mcp_client.get_tools()
|
||||
_mcp_tools_cache[roles_key] = tools
|
||||
print(f"Loaded {len(tools)} tools from MCP server with roles: {user_roles}")
|
||||
except Exception as e:
|
||||
print(f"Warning: Failed to load MCP tools: {e}")
|
||||
_mcp_tools_cache[roles_key] = []
|
||||
|
||||
return _mcp_tools_cache[roles_key]
|
||||
|
||||
|
||||
async def chat_node(state: AgentState, config: RunnableConfig) -> dict:
|
||||
"""
|
||||
Standard chat node based on the ReAct design pattern. It handles:
|
||||
- The model to use (and binds in CopilotKit actions and the tools defined above)
|
||||
- The system prompt
|
||||
- Getting a response from the model
|
||||
- Handling tool calls
|
||||
|
||||
For more about the ReAct design pattern, see:
|
||||
https://www.perplexity.ai/search/react-agents-NcXLQhreS0WDzpVaS4m9Cg
|
||||
"""
|
||||
|
||||
# 0. Extract user roles from config.configurable.context
|
||||
configurable = config.get("configurable", {})
|
||||
context = configurable.get("context", {})
|
||||
user_roles = context.get("auth0_user_roles", [])
|
||||
|
||||
# 1. Define the model
|
||||
model = ChatGoogleGenerativeAI(model="gemini-3-pro-preview", max_output_tokens=65536)
|
||||
|
||||
# 1.5 Load MCP tools from the cavepedia server with roles
|
||||
mcp_tools = await get_mcp_tools(user_roles)
|
||||
|
||||
# 2. Bind the tools to the model
|
||||
model_with_tools = model.bind_tools(
|
||||
[
|
||||
*state.get("tools", []), # bind tools defined by ag-ui
|
||||
*backend_tools,
|
||||
*mcp_tools, # Add MCP tools from cavepedia server
|
||||
],
|
||||
)
|
||||
|
||||
# 3. Define the system message by which the chat model will be run
|
||||
system_message = SystemMessage(
|
||||
content=f"""You are a helpful assistant with access to cave-related information through the Cavepedia MCP server. You can help users find information about caves, caving techniques, and related topics.
|
||||
# Create the agent with Google Gemini model
|
||||
agent = Agent(
|
||||
model=GoogleModel("gemini-2.5-pro"),
|
||||
toolsets=[mcp_server],
|
||||
instructions="""You are a helpful assistant with access to cave-related information through the Cavepedia MCP server. You can help users find information about caves, caving techniques, and related topics.
|
||||
|
||||
IMPORTANT RULES:
|
||||
1. Always cite your sources at the end of each response. List the specific sources/documents you used.
|
||||
2. If you cannot find information on a topic, say so clearly. Do NOT make up information or hallucinate facts.
|
||||
3. If the MCP tools return no results, acknowledge that you couldn't find the information rather than guessing.
|
||||
|
||||
User roles: {', '.join(user_roles) if user_roles else 'none'}"""
|
||||
)
|
||||
|
||||
# 4. Run the model to generate a response
|
||||
response = await model_with_tools.ainvoke(
|
||||
[
|
||||
system_message,
|
||||
*state["messages"],
|
||||
],
|
||||
config,
|
||||
)
|
||||
|
||||
# 5. Return the response in the messages
|
||||
return {"messages": [response]}
|
||||
|
||||
|
||||
async def tool_node_wrapper(state: AgentState, config: RunnableConfig) -> dict:
|
||||
"""
|
||||
Custom tool node that handles both backend tools and MCP tools.
|
||||
"""
|
||||
# Extract user roles from config.configurable.context
|
||||
configurable = config.get("configurable", {})
|
||||
context = configurable.get("context", {})
|
||||
user_roles = context.get("auth0_user_roles", [])
|
||||
|
||||
# Load MCP tools with roles
|
||||
mcp_tools = await get_mcp_tools(user_roles)
|
||||
all_tools = [*backend_tools, *mcp_tools]
|
||||
|
||||
# Use the standard ToolNode with all tools
|
||||
node = ToolNode(tools=all_tools)
|
||||
result = await node.ainvoke(state, config)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
# Define the workflow graph
|
||||
workflow = StateGraph(AgentState)
|
||||
workflow.add_node("chat_node", chat_node)
|
||||
workflow.add_node("tools", tool_node_wrapper) # Must be named "tools" for tools_condition
|
||||
|
||||
# Set entry point
|
||||
workflow.add_edge(START, "chat_node")
|
||||
|
||||
# Use tools_condition for proper routing
|
||||
workflow.add_conditional_edges(
|
||||
"chat_node",
|
||||
tools_condition,
|
||||
3. If the MCP tools return no results, acknowledge that you couldn't find the information rather than guessing.""",
|
||||
)
|
||||
|
||||
# After tools execute, go back to chat
|
||||
workflow.add_edge("tools", "chat_node")
|
||||
|
||||
graph = workflow.compile()
|
||||
|
||||
@@ -4,17 +4,8 @@ version = "1.0.0"
|
||||
description = "VPI-1000"
|
||||
requires-python = ">=3.13,<3.14"
|
||||
dependencies = [
|
||||
"langchain==1.1.0",
|
||||
"langgraph==1.0.4",
|
||||
"langsmith>=0.4.49",
|
||||
"anthropic>=0.40.0",
|
||||
"pydantic-ai>=0.1.0",
|
||||
"fastapi>=0.115.5,<1.0.0",
|
||||
"uvicorn>=0.29.0,<1.0.0",
|
||||
"python-dotenv>=1.0.0,<2.0.0",
|
||||
"langchain-google-genai>=2.1.0",
|
||||
"langchain-mcp-adapters>=0.1.0",
|
||||
"docstring-parser>=0.17.0",
|
||||
"jsonschema>=4.25.1",
|
||||
"copilotkit>=0.1.0",
|
||||
"ag-ui-langgraph>=0.0.4",
|
||||
]
|
||||
|
||||
@@ -1,35 +1,18 @@
|
||||
"""
|
||||
Self-hosted LangGraph agent server using AG-UI protocol.
|
||||
Self-hosted PydanticAI agent server using AG-UI protocol.
|
||||
"""
|
||||
|
||||
import os
|
||||
from fastapi import FastAPI
|
||||
import uvicorn
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from copilotkit import LangGraphAGUIAgent
|
||||
from ag_ui_langgraph import add_langgraph_fastapi_endpoint
|
||||
from main import graph
|
||||
from pydantic_ai.ui.ag_ui.app import AGUIApp
|
||||
from main import agent
|
||||
|
||||
load_dotenv()
|
||||
|
||||
app = FastAPI(title="Cavepedia Agent")
|
||||
|
||||
add_langgraph_fastapi_endpoint(
|
||||
app=app,
|
||||
agent=LangGraphAGUIAgent(
|
||||
name="vpi_1000",
|
||||
description="AI assistant with access to cave-related information through the Cavepedia MCP server",
|
||||
graph=graph,
|
||||
),
|
||||
path="/",
|
||||
)
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
def health():
|
||||
"""Health check."""
|
||||
return {"status": "ok"}
|
||||
# Convert PydanticAI agent to ASGI app with AG-UI protocol
|
||||
app = AGUIApp(agent)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
1730
web/agent/uv.lock
generated
1730
web/agent/uv.lock
generated
Filskillnaden har hållits tillbaka eftersom den är för stor
Load Diff
@@ -1,5 +1,5 @@
|
||||
{
|
||||
"name": "langgraph-python-starter",
|
||||
"name": "cavepedia-web",
|
||||
"version": "0.1.0",
|
||||
"private": true,
|
||||
"scripts": {
|
||||
@@ -15,7 +15,6 @@
|
||||
},
|
||||
"dependencies": {
|
||||
"@ag-ui/client": "^0.0.42",
|
||||
"@ag-ui/langgraph": "0.0.18",
|
||||
"@auth0/nextjs-auth0": "^4.13.2",
|
||||
"@copilotkit/react-core": "1.50.0",
|
||||
"@copilotkit/react-ui": "1.50.0",
|
||||
@@ -31,7 +30,6 @@
|
||||
},
|
||||
"devDependencies": {
|
||||
"@eslint/eslintrc": "^3",
|
||||
"@langchain/langgraph-cli": "^1.0.4",
|
||||
"@tailwindcss/postcss": "^4",
|
||||
"@types/node": "^20",
|
||||
"@types/react": "^19",
|
||||
|
||||
@@ -4,17 +4,15 @@ import {
|
||||
copilotRuntimeNextJSAppRouterEndpoint,
|
||||
} from "@copilotkit/runtime";
|
||||
|
||||
import { LangGraphAgent } from "@ag-ui/langgraph";
|
||||
import { HttpAgent } from "@ag-ui/client";
|
||||
import { NextRequest } from "next/server";
|
||||
|
||||
const serviceAdapter = new ExperimentalEmptyAdapter();
|
||||
|
||||
const runtime = new CopilotRuntime({
|
||||
agents: {
|
||||
vpi_1000: new LangGraphAgent({
|
||||
deploymentUrl: process.env.LANGGRAPH_DEPLOYMENT_URL || "http://localhost:8000",
|
||||
graphId: "vpi_1000",
|
||||
langsmithApiKey: process.env.LANGSMITH_API_KEY || "",
|
||||
vpi_1000: new HttpAgent({
|
||||
url: process.env.LANGGRAPH_DEPLOYMENT_URL || "http://localhost:8000",
|
||||
}),
|
||||
},
|
||||
});
|
||||
|
||||
Referens i nytt ärende
Block a user