244 lines
11 KiB
HTML
244 lines
11 KiB
HTML
|
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
|
||
|
<html>
|
||
|
<head>
|
||
|
<meta http-equiv="Content-Type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
|
||
|
alpha) [Netscape]">
|
||
|
<meta name="Author" content="C. L. Davis">
|
||
|
<title>Magnetism - Ampere's Law - Physics 299</title>
|
||
|
<meta content="C. L. Davis" name="author">
|
||
|
</head>
|
||
|
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
|
||
|
255);" link="#0000ee" vlink="#551a8b" alink="#ff0000">
|
||
|
<center>
|
||
|
<h1> <img src="ULPhys1.gif" height="50" width="189"
|
||
|
align="texttop"></h1>
|
||
|
</center>
|
||
|
<center>
|
||
|
<h1>Ampere's Law <br>
|
||
|
</h1>
|
||
|
</center>
|
||
|
<center><img src="celticbar.gif" height="22" width="576"><br>
|
||
|
<br>
|
||
|
<font color="#ff0000"><i>
|
||
|
<meta http-equiv="content-type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
</i></font><font color="#ff0000"><i>
|
||
|
<meta http-equiv="content-type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
</i></font>
|
||
|
<div class="copy-paste-block"><font color="#ff0000"><i><span
|
||
|
class="bqQuoteLink">"A</span></i></font><font
|
||
|
color="#ff0000"><i><span class="bqQuoteLink"> fact is a simple
|
||
|
statement that everyone believes. It is innocent,
|
||
|
unless found guilty. A hypothesis is a novel
|
||
|
suggestion that no one wants to believe. It is
|
||
|
guilty, until found effective</span></i><span></span>"</font><br>
|
||
|
</div>
|
||
|
<font color="#ff0000"><i> </i><font color="#000000">Edward Teller</font></font><br>
|
||
|
</center>
|
||
|
<img src="netbar.gif" height="40" width="100%" align="middle">
|
||
|
<blockquote> </blockquote>
|
||
|
<ul>
|
||
|
<li><img alt="magamperefig3" src="mag_ampere_fig3.gif"
|
||
|
height="206" width="267" align="right">We have just seen that
|
||
|
the Biot-Savart Law is in some sense the magnetic equivalent of
|
||
|
Coulomb's Law. Is there a magnetic equivalent of Gauss's
|
||
|
Law ? The answer is (of course) yes - Ampere's Law. <br>
|
||
|
</li>
|
||
|
</ul>
|
||
|
<div align="center"><img alt="magampereeqn1"
|
||
|
src="mag_ampere_eqn1.jpg" height="60" width="180"><br>
|
||
|
<blockquote>
|
||
|
<div align="left">where <b>ds</b> is an element of length
|
||
|
around an arbitrary closed loop "C", called an Amperian loop
|
||
|
and the summation is over all currents passing <u><i><b>through</b></i></u>
|
||
|
the loop.<br>
|
||
|
<br>
|
||
|
<img alt="exclamation" src="exclamation-icon.gif" height="30"
|
||
|
width="31"> Currents passing "out of" the loop are defined
|
||
|
as positive, currents passing into the loop are negative,
|
||
|
whereas current which do not pass through the loop are not
|
||
|
included in the summation.<br>
|
||
|
<br>
|
||
|
<img alt="exclamation" src="exclamation-icon.gif" height="30"
|
||
|
width="31"> Ampere's Law forms part of the second of
|
||
|
Maxwell's equations. We will shortly adjust it
|
||
|
slightly (following Maxwell), to complete the second of
|
||
|
Maxwell's equations. Remember, Gauss's Law was the first
|
||
|
of Maxwell's equations.<br>
|
||
|
</div>
|
||
|
</blockquote>
|
||
|
<div align="left">
|
||
|
<ul>
|
||
|
<li>As a reminder, Gauss's Law appears below,<br>
|
||
|
</li>
|
||
|
</ul>
|
||
|
</div>
|
||
|
<img alt="elecgausseqn3" src="elec_gauss_eqn3.jpg" height="84"
|
||
|
width="233"><br>
|
||
|
<blockquote>
|
||
|
<div align="left"><img alt="exclamation"
|
||
|
src="exclamation-icon.gif" height="30" width="31"> Note that
|
||
|
Gauss's Law involves a <u><i><b>surface</b></i></u> integral
|
||
|
of <b>E</b> over a closed Gaussian surface "S".
|
||
|
Ampere's Law involves a <u><i><b>line</b></i></u> integral
|
||
|
around a closed Amperian loop "C".<br>
|
||
|
<br>
|
||
|
<img alt="exclamation" src="exclamation-icon.gif" height="30"
|
||
|
width="31"> Gauss's Law is valid for any arbitrary closed
|
||
|
Gaussian surface. Similarly Ampere's Law is valid for
|
||
|
any closed (Amperian) loop.<br>
|
||
|
</div>
|
||
|
</blockquote>
|
||
|
<div align="left">
|
||
|
<ul>
|
||
|
<li>Although Ampere's Law is true for any closed loop "C", it
|
||
|
is only useful to calculate <b>B</b> for some very
|
||
|
symmetric cases, where we already know (from symmetry) some
|
||
|
of the properties of <b>B</b>. </li>
|
||
|
</ul>
|
||
|
<div align="center"><img alt="divider"
|
||
|
src="divider_ornbarblu.gif" height="64" width="393"></div>
|
||
|
<div align="center">
|
||
|
<h3><u><font color="#cc33cc"><b>Simple Applications</b></font></u></h3>
|
||
|
</div>
|
||
|
<ul>
|
||
|
<li><b>B</b><b> due to an infinite straight current carrying
|
||
|
wire.</b> <br>
|
||
|
<ul>
|
||
|
<br>
|
||
|
<li><u><i><img alt="magamperefig4"
|
||
|
src="mag_ampere_fig4.gif" height="268" width="341"
|
||
|
align="right">Symmetry argument:</i></u>
|
||
|
<p>Since the wire is infinite, we know from the
|
||
|
Biot-Savart Law that <b>B</b> is perpendicular to <b>dl</b>
|
||
|
and <b>r</b> and thus lines of <b>B</b> must form
|
||
|
concentric circles around the current. Also, <b>B</b>
|
||
|
can, at most, depend only on the distance from the
|
||
|
wire, r.<br>
|
||
|
</p>
|
||
|
</li>
|
||
|
<li><u><i> Choice of Amperian Loop:</i></u>
|
||
|
<p> The Amperian loop is chosen so that <b>B</b> is
|
||
|
constant on the loop and in the same direction as <b>ds</b>
|
||
|
- that is a circle whose plane is perpendicular to the
|
||
|
wire and centered on the wire. This allows us to
|
||
|
take <b>B</b> "out of the integral". </p>
|
||
|
</li>
|
||
|
<li><u><i> Evaluation of <b>B</b>:</i></u>
|
||
|
<p> With the Amperian loop above we have<br>
|
||
|
</p>
|
||
|
<div align="center"><img alt="magampereeqn2"
|
||
|
src="mag_ampere_eqn2.jpg" height="60" width="493"><br>
|
||
|
<div align="left">so that<br>
|
||
|
<div align="center"><img alt="magampereeqn3"
|
||
|
src="mag_ampere_eqn3.jpg" height="71" width="99"><br>
|
||
|
<br>
|
||
|
<div align="left">directed "circumferentially"
|
||
|
around the loop, with the sense given by the
|
||
|
right-hand-rule described under the Biot-Savart
|
||
|
law.</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</li>
|
||
|
</ul>
|
||
|
<div align="center"><img alt="magamperefig5"
|
||
|
src="mag_ampere_fig5.jpg" height="246" width="313"><br>
|
||
|
</div>
|
||
|
<ul>
|
||
|
</ul>
|
||
|
</li>
|
||
|
<br>
|
||
|
</ul>
|
||
|
<hr size="2" width="100%">
|
||
|
<ul>
|
||
|
<br>
|
||
|
<li><b><img alt="magamperefig1" src="mag_ampere_fig1.jpg"
|
||
|
height="127" width="175" align="right">B</b><b> due to
|
||
|
an infinite solenoid</b>
|
||
|
<ul>
|
||
|
<br>
|
||
|
<li><u><i>Symmetry argument:</i></u>
|
||
|
<p>Since the solenoid is infinite, we conclude that <b>B</b>
|
||
|
is directed along the axis of the solenoid.
|
||
|
Also, <b>B</b> can, at most, depend only on the
|
||
|
distance from the axis of the solenoid. For an
|
||
|
infinite solenoid <b>B</b> = 0 outside the solenoid.<br>
|
||
|
</p>
|
||
|
</li>
|
||
|
<li><u><i> <img alt="magamperefig2"
|
||
|
src="mag_ampere_fig2.jpg" height="342" width="304"
|
||
|
align="right">Choice of Amperian Loop:</i></u>
|
||
|
<p> The rectangular Amperian loop (at right) is chosen
|
||
|
so that <b>B</b> is constant on the two sides
|
||
|
parallel to the solenoid axis and perpendicular to the
|
||
|
<b>ds</b> on the other two sides. This allows us to
|
||
|
take <b>B</b> "out of the integral". </p>
|
||
|
</li>
|
||
|
<li><u><i> Evaluation of <b>B</b>:</i></u>
|
||
|
<p> With the Amperian loop above we have<br>
|
||
|
</p>
|
||
|
<div align="center"><img alt="magampereeqn4"
|
||
|
src="mag_ampere_eqn4.jpg" height="49" width="542"><br>
|
||
|
<div align="left">so that<br>
|
||
|
<div align="center"><img alt="magampereeqn5"
|
||
|
src="mag_ampere_eqn5.jpg" height="46"
|
||
|
width="117"><br>
|
||
|
<br>
|
||
|
<div align="left">where n is the number of turns
|
||
|
per unit length and the field is directed along
|
||
|
the solenoid axis as shown. (Use
|
||
|
right-hand-rule) </div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</li>
|
||
|
</ul>
|
||
|
<img alt="exclamation" src="exclamation-icon.gif"
|
||
|
height="30" width="31"> Note that, the above analysis is
|
||
|
true only for an <i><b>infinite</b></i> solenoid. For
|
||
|
a real solenoid it is a good approximation inside, away from
|
||
|
the ends. The <b>B</b> field outside is not zero, but
|
||
|
much smaller than the field inside.</li>
|
||
|
</ul>
|
||
|
<blockquote><img alt="exclamation" src="exclamation-icon.gif"
|
||
|
height="30" width="31"> The shape of the <b>B</b> field due
|
||
|
to a solenoid is the same as that of a bar magnet and a
|
||
|
magnetic dipole.<br>
|
||
|
<div align="center"><img alt="magamperefig6"
|
||
|
src="mag_ampere_fig6.gif" height="257" width="437"><br>
|
||
|
</div>
|
||
|
</blockquote>
|
||
|
<ul>
|
||
|
</ul>
|
||
|
<img src="netbar.gif" height="40" width="100%"></div>
|
||
|
<div align="center"> </div>
|
||
|
<center>
|
||
|
<p style="color: rgb(255, 0, 0); font-style: italic;"
|
||
|
class="MsoNormal">
|
||
|
<meta http-equiv="content-type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
</p>
|
||
|
<font color="#ff0000"><i>What does a clock do when it's hungry ?
|
||
|
It goes back four seconds. </i></font><br>
|
||
|
<br>
|
||
|
<img src="celticbar.gif" height="22" width="576"> <br>
|
||
|
|
||
|
<p><i>Dr. C. L. Davis</i> <br>
|
||
|
<i>Physics Department</i> <br>
|
||
|
<i>University of Louisville</i> <br>
|
||
|
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
|
||
|
<br>
|
||
|
</p>
|
||
|
<p><img src="header-index.gif" height="51" width="92"> </p>
|
||
|
</center>
|
||
|
<p><br>
|
||
|
</p>
|
||
|
<blockquote> </blockquote>
|
||
|
</div>
|
||
|
</body>
|
||
|
</html>
|