288 lines
12 KiB
HTML
288 lines
12 KiB
HTML
|
<!DOCTYPE html PUBLIC "-//w3c//dtd html 4.0 transitional//en">
|
||
|
<html>
|
||
|
<head>
|
||
|
<meta http-equiv="Content-Type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; U; OSF1 V4.0
|
||
|
alpha) [Netscape]">
|
||
|
<meta name="Author" content="C. L. Davis">
|
||
|
<title>Magnetism - Magnetic Energy - Physics 299</title>
|
||
|
<meta content="C. L. Davis" name="author">
|
||
|
</head>
|
||
|
<body style="color: rgb(0, 0, 0); background-color: rgb(255, 255,
|
||
|
255);" link="#0000ee" alink="#ff0000" vlink="#551a8b">
|
||
|
<center>
|
||
|
<h1> <img src="ULPhys1.gif" height="50" align="texttop"
|
||
|
width="189"></h1>
|
||
|
</center>
|
||
|
<center>
|
||
|
<h1>Displacement Current<br>
|
||
|
</h1>
|
||
|
</center>
|
||
|
<center><img src="celticbar.gif" height="22" width="576"><br>
|
||
|
<br>
|
||
|
<font color="#ff0000"><i>
|
||
|
<meta http-equiv="content-type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
</i></font><font color="#ff0000"><i>
|
||
|
<meta http-equiv="content-type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
</i></font>
|
||
|
<div class="copy-paste-block"><font color="#ff0000"><i><span
|
||
|
class="bqQuoteLink">"A</span></i></font><font
|
||
|
color="#ff0000"><i><span class="bqQuoteLink"> fact is a simple
|
||
|
statement that everyone believes. It is innocent,
|
||
|
unless found guilty. A hypothesis is a novel
|
||
|
suggestion that no one wants to believe. It is
|
||
|
guilty, until found effective</span></i><span></span>"</font><br>
|
||
|
</div>
|
||
|
<font color="#ff0000"><i> </i><font color="#000000">Edward Teller</font></font><br>
|
||
|
</center>
|
||
|
<img src="netbar.gif" height="40" align="middle" width="100%">
|
||
|
<blockquote> </blockquote>
|
||
|
<ul>
|
||
|
<li> Having discussed Gauss' Law for Magnetism, we now have four
|
||
|
equations describing electromagnetism,</li>
|
||
|
</ul>
|
||
|
<div align="center">Gauss' Law: <img alt="elecgausseqn3"
|
||
|
src="elec_gauss_eqn3.jpg" height="84" align="middle" width="233"><br>
|
||
|
<br>
|
||
|
</div>
|
||
|
<div align="center">Ampere's Law: <img alt="magampereeqn1"
|
||
|
src="mag_ampere_eqn1.jpg" height="60" align="middle" width="180"><br>
|
||
|
<br>
|
||
|
</div>
|
||
|
<div align="center"> Faraday's Law: <img alt="magfaradayeqn6"
|
||
|
src="mag_faraday_eqn6.jpg" height="58" align="middle"
|
||
|
width="297"><br>
|
||
|
<br>
|
||
|
Nobody's Law: <img alt="magmonopolefig5"
|
||
|
src="mag_monopole_fig5.jpg" height="48" align="middle"
|
||
|
width="171"><br>
|
||
|
<br>
|
||
|
<div align="left">
|
||
|
<ul>
|
||
|
<li>Looking carefully at these equations, the two flux
|
||
|
equations are now consistent with our physical understanding
|
||
|
of electric and magnetic charges. <br>
|
||
|
</li>
|
||
|
</ul>
|
||
|
<ul>
|
||
|
<li>The line integrals are a different matter. The right
|
||
|
hand side of Ampere's Law has a summation over electric
|
||
|
currents. Naively we would expect a similar sum over
|
||
|
"magnetic currents" on the right hand side of Faraday's
|
||
|
Law. But since there are no magnetic charges,
|
||
|
"magnetic currents" do not exist and the necessity for such
|
||
|
an additional term disappears.</li>
|
||
|
</ul>
|
||
|
<ul>
|
||
|
<li>However, in words, Faraday's Law states that</li>
|
||
|
</ul>
|
||
|
<div align="center">
|
||
|
<blockquote>
|
||
|
<p><b>"A changing magnetic field ( </b><b><img
|
||
|
alt="magdisplacementeqn1"
|
||
|
src="mag_displacement_eqn1.jpg" height="31"
|
||
|
align="middle" width="45"></b><b> ) gives rise to an
|
||
|
electric field ( </b><b><img alt="magdisplacementeqn2"
|
||
|
src="mag_displacement_eqn2.jpg" height="29"
|
||
|
align="middle" width="54"></b><b> </b>)"<br>
|
||
|
</p>
|
||
|
<p align="left">For a more complete correspondence between <b>E</b>
|
||
|
and <b>B</b> we would expect a term added to the right
|
||
|
hand side of Ampere's Law which indicates,<br>
|
||
|
</p>
|
||
|
<p align="center"> <b>"A changing electric field ( </b><img
|
||
|
alt="magdisplacementeqn3"
|
||
|
src="mag_displacement_eqn3.jpg" height="31"
|
||
|
align="middle" width="45">)<b> gives rise to a
|
||
|
magnetic field ( </b><img alt="magdisplacementeqn4"
|
||
|
src="mag_displacement_eqn4.jpg" height="29"
|
||
|
align="middle" width="54"><b> )</b>"<br>
|
||
|
</p>
|
||
|
</blockquote>
|
||
|
<div align="left">
|
||
|
<ul>
|
||
|
<li>Maxwell proposed this addition, the existence of which
|
||
|
is now physically verified. Furthermore, Maxwell
|
||
|
showed that this additional term, known as the
|
||
|
displacement current, is essential for the description
|
||
|
of electromagnetic waves.</li>
|
||
|
</ul>
|
||
|
<ul>
|
||
|
<li>The form of the displacement current term can be
|
||
|
obtained by the argument described below.</li>
|
||
|
</ul>
|
||
|
<ul>
|
||
|
<li>We have seen that current and current density are
|
||
|
related by the following equation</li>
|
||
|
</ul>
|
||
|
<div align="center"><img alt="eleccurrenteqn3"
|
||
|
src="elec_current_eqn3.jpg" height="38" width="103"><br>
|
||
|
<blockquote>
|
||
|
<div align="left">Suppose we consider a closed surface,
|
||
|
then charge conservation tells us that this flux
|
||
|
integral must be zero. Charge cannot be created
|
||
|
or destroyed inside the closed surface, therefore,<br>
|
||
|
<div align="center"><img alt="magdisplacementeqn5"
|
||
|
src="mag_displacement_eqn5.jpg" height="46"
|
||
|
width="117"><br>
|
||
|
<div align="left"><img alt="exclamation"
|
||
|
src="exclamation-icon.gif" height="30"
|
||
|
width="31"> This equation can be considered as a
|
||
|
formal statement of conservation of charge.<br>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</blockquote>
|
||
|
<div align="left">
|
||
|
<ul>
|
||
|
<li><img alt="magdisplacementfig1"
|
||
|
src="mag_displacement_fig1.jpg" height="305"
|
||
|
align="right" width="284">Consider a parallel
|
||
|
plate capacitor (at right). The closed surface
|
||
|
over which we will apply the above integral is S<sub>1</sub>
|
||
|
and S<sub>2</sub>. Current I passes in though
|
||
|
S<sub>1</sub>, but since S<sub>2</sub> is between
|
||
|
the capacitor plates, no current passes out of the
|
||
|
closed surface. As it stands, we have violated
|
||
|
conservation of charge... What to do ?
|
||
|
Propose that there is an equal current passing out
|
||
|
of the closed surface through S<sub>2</sub> - the
|
||
|
"displacement current".</li>
|
||
|
</ul>
|
||
|
<ul>
|
||
|
<li>Now</li>
|
||
|
</ul>
|
||
|
<div align="center"><img alt="magdisplacementeqn6"
|
||
|
src="mag_displacement_eqn6.jpg" height="65"
|
||
|
width="441"><br>
|
||
|
<br>
|
||
|
<blockquote>
|
||
|
<div align="left">Therefore, if we define<br>
|
||
|
<div align="center"><img alt="magdisplacementeqn7"
|
||
|
src="mag_displacement_eqn7.jpg" height="67"
|
||
|
width="126"><br>
|
||
|
<div align="left">as the displacement current,
|
||
|
by writing<br>
|
||
|
<div align="center"><img
|
||
|
alt="magdisplacementeqn8"
|
||
|
src="mag_displacement_eqn8.jpg"
|
||
|
height="39" width="135"><br>
|
||
|
<div align="left">we can ensure charge is
|
||
|
conserved.<br>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</blockquote>
|
||
|
<div align="left">
|
||
|
<div align="center">
|
||
|
<div align="left">
|
||
|
<div align="center">
|
||
|
<div align="left">
|
||
|
<ul>
|
||
|
<li>Therefore, including the displacement
|
||
|
current, Ampere's Law becomes,</li>
|
||
|
</ul>
|
||
|
<div align="center"><img alt=""
|
||
|
src="mag_displacement_eqn9.jpg"
|
||
|
height="64" width="252"></div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
<ol>
|
||
|
</ol>
|
||
|
<div align="center">
|
||
|
<div align="left">
|
||
|
<div align="center">
|
||
|
<div align="left">
|
||
|
<div align="center">
|
||
|
<div align="left">
|
||
|
<div align="center">
|
||
|
<div align="left">
|
||
|
<div align="center">
|
||
|
<div align="left"> </div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
<blockquote>
|
||
|
<div align="left"> </div>
|
||
|
</blockquote>
|
||
|
<div align="center">
|
||
|
<div align="left">
|
||
|
<div align="center">
|
||
|
<div align="left">
|
||
|
<div align="center">
|
||
|
<div align="left">
|
||
|
<div align="center">
|
||
|
<div align="left">
|
||
|
<div align="center">
|
||
|
<div align="center">
|
||
|
<div>
|
||
|
<div align="left">
|
||
|
<div align="center">
|
||
|
<div align="left"> </div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
<blockquote>
|
||
|
<div align="left"> </div>
|
||
|
</blockquote>
|
||
|
</div>
|
||
|
</div>
|
||
|
<blockquote> </blockquote>
|
||
|
</div>
|
||
|
<div align="center"><img src="netbar.gif" height="40" width="100%"></div>
|
||
|
<div align="center">
|
||
|
<div align="center"> </div>
|
||
|
<center>
|
||
|
<p style="color: rgb(255, 0, 0); font-style: italic;"
|
||
|
class="MsoNormal">
|
||
|
<meta http-equiv="content-type" content="text/html;
|
||
|
charset=windows-1252">
|
||
|
</p>
|
||
|
<font color="#ff0000"><i>This girl said she recognized me from
|
||
|
the vegetarian club, but I'd never met herbivore. </i></font><br>
|
||
|
<br>
|
||
|
<img src="celticbar.gif" height="22" width="576"> <br>
|
||
|
|
||
|
<p><i>Dr. C. L. Davis</i> <br>
|
||
|
<i>Physics Department</i> <br>
|
||
|
<i>University of Louisville</i> <br>
|
||
|
<i>email</i>: <a href="mailto:c.l.davis@louisville.edu">c.l.davis@louisville.edu</a>
|
||
|
<br>
|
||
|
</p>
|
||
|
<p><img src="header-index.gif" height="51" width="92"> </p>
|
||
|
</center>
|
||
|
<p><br>
|
||
|
</p>
|
||
|
<blockquote> </blockquote>
|
||
|
</div>
|
||
|
</body>
|
||
|
</html>
|